首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.  相似文献   

2.
The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>1017 atoms cm−3) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer.  相似文献   

3.
The concept of Double Peak (DP) electric field distribution is considered for the analysis of operational characteristics of irradiated silicon detectors. The key point of the model is trapping of equilibrium carriers to the midgap energy levels of radiation-induced defects, which leads to a non-uniform distribution of space charge concentration with positively and negatively charged regions adjacent to the p+ and n+ contacts, respectively. In our new development of the DP model we consider a non-depleted base region in between the space charge regions as a high resistivity bulk, which operates as a drift region with a non-negligible electric field. Electric field characteristics of detectors processed from n-type MCZ Si wafers using various technological procedures, and irradiated by 1 MeV neutrons and 24 GeV/c protons, have been compared. Electric field profiles have been reconstructed from DP pulse response of heavily irradiated detectors and calculated by the simulation of DP electric field distribution caused by carrier trapping. It is shown that detectors from n-type MCZ Si irradiated by 24 GeV/c protons do not show typical space charge sign inversion up to the irradiation fluence of about 2.2×1015 p/cm2 and the region with a positive charge dominates over a negatively charged region.  相似文献   

4.
The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of −4.4×10−18 A/R/h/cm (−9.3×10−24 A/γ/cm2-s/cm), −5.2×10−18 A/R/h/cm (−1.133×10−23 A/γ/cm2-s/cm) and 34×10−18 A/R/h/cm (7.14×10−23 A/γ/cm2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10−23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10−22 and 2.64×10−22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.  相似文献   

5.
《Materials Research Bulletin》2006,41(10):1959-1963
Photoluminescence spectrum of Ce:YAG single crystal was studied employing vacuum ultraviolet (VUV) synchrotron radiation. Intrinsic absorption edge at about 52,000 cm−1 was observed in the absorption spectrum. From the VUV excitation spectrum, the energy of the highest d-component of 53,191 cm−1 (188 nm) for the Ce3+ ions in YAG was obtained at 300 K. The disappearance of the third 5d level at 37,735 cm−1 (265 nm) in absorption and excitation spectra in our samples may be due to the impurity Fe3+ ions absorption.  相似文献   

6.
The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 μm/150 μm/7000 μm covered by a 2 μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.  相似文献   

7.
We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2×1015 cm–2 of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.  相似文献   

8.
Radiation hardness of silicon detectors based on thin epitaxial layer on Czochralski (CZ) substrate for the LHC upgrade (Super-LHC) was studied. No type inversion was observed after irradiation by 24 GeV/c protons up to the fluence of 1016 p/cm2 due to overcompensating donor generation. After long-term annealing (corresponding to 500 days at room temperature) proton irradiated devices show a decrease of the effective doping concentration and then undergo type inversion. Measurements confirm that thin epitaxial devices on CZ substrate could be used for innermost layers of vertex detectors in future experiments at the Super-LHC.  相似文献   

9.
Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO2. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 106 while the device mobility values were increased from 2.31 cm2/V s to 6.24 cm2/V s upon increasing the deposition temperature of the tin oxide films.  相似文献   

10.
We have investigated the effect of the deposition of an HfO2 thin film as a gate insulator with different O2/(Ar + O2) gas ratios using RF magnetron sputtering. The HfO2 thin film affected the device performance of amorphous indium–gallium–zinc oxide transistors. The performance of the fabricated transistors improved monotonously with increasing O2/(Ar + O2) gas ratio: at a ratio of 0.35, the field effect mobility of the amorphous InGaZnO thin film transistors was improved to 7.54 cm2/(V s). Compared to those prepared with an O2/(Ar + O2) gas ratio of 0.05, the field effect mobility of the amorphous InGaZnO thin film transistors was increased to 1.64 cm2/(V s) at a ratio of 0.35. This enhancement in the field effect mobility was attributed to the reduction of the root mean square roughness of the gate insulator layer, which might result from the trap states and surface scattering of the gate insulator layer at the lower O2/(Ar + O2) gas ratio.  相似文献   

11.
Tin-catalyzed silicon nanowires were synthesized for solar cells application. Voluminous silicon nanowires were fabricated on single crystalline silicon wafer. Optical reflectance and solar cell efficiency of the synthesized silicon nanowires were explored. The reflectance of as-synthesized silicon nanowires was obtained approximately 5% in the short wavelength region (λ < 500 nm). A short circuit current of 2.3 mA/cm2 and open circuit voltage of 520 mV for 1 cm2 SiNWs solar cell was obtained.  相似文献   

12.
Amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) with double-layer gate dielectric were fabricated at low temperature and characterized. A stacked 150 nm-thick SiO2/50 nm-thick HfO2 dielectric layer was employed to improve the capacitance and leakage characteristics of the gate oxide. The SiO2/HfO2 showed a higher capacitance of 35 nF/cm2 and a lower leakage current density of 4.6 nA/cm2 than 200 nm-thick SiO2. The obtained saturation mobility (μsat), threshold voltage (Vth), and subthreshold swing (S) of the fabricated TFTs were 18.8 cm2 V?1 s?1, 0.88 V, and 0.48 V/decade, respectively. Furthermore, it was found that oxygen pressure during the IGZO channel layer deposition had a great influence on the performance of the TFTs.  相似文献   

13.
We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber (μ-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this μ-TPC (10×10×8 cm3) and the 6×6×13 mm3 GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the μ-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6° (FWHM) at 364 keV of 131I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of 131I.  相似文献   

14.
《Vacuum》1999,52(1-2):203-208
This work reports on the performances of undoped and doped amorphous/nanocrystalline silicon films grown by hot wire plasma assisted technique. The structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), composition (oxygen and hydrogen content) and transport properties of the films are highly dependent on the temperature of the filament and on the hydrogen dilution. The undoped films grown under low r.f. power (≈4 mWcm−2) and filament temperatures around 1850 K present dark conductivities below 10−10 Scm−1, optical gaps of about 1.6 eV and photosensitivities above 105, (under AM1.5 light intensities), with almost no traces of oxygen content. For the n- and the p-doped silicon films also fabricated under the same conditions the conductivities obtained are of about 10−2 Scm−1 and 10−5 Scm−1, respectively.  相似文献   

15.
Nanoporous silicon carbide materials were prepared by the pyrolysis of the preceramic polymer, polycarbosilane (PCS), with and without the addition of an inert filler (nano- and micron-sized silicon carbide powders). Hydrosilylation crosslinking of PCS with divinylbenzene prior to pyrolysis appeared to have little influence on the development of micro- and mesoporosity. Maximum micropore volumes were 0.28 cm3 g?1 for non-crosslinked PCS and 0.25, 0.33 and 0.32 cm3 g?1 for PCS crosslinked with 2, 6 and 10 wt.% DVB respectively. Micropore volumes decreased under hydrothermal conditions to 0.03 cm3 g?1 for non-crosslinked and 0 cm3 g?1 for crosslinked PCS. Porosity was also lost at temperatures above 700 °C. The addition of nano-sized SiC powders to PCS prior to pyrolysis maintained mesoporosity to temperatures of 1200 °C, however, micron-sized SiC powders did not maintain porosity above 800 °C. The modal pore size in pellets formed by compressing micron-sized powders with the preceramic polymer was 5 μm compared to 30 nm when nano-sized powders were used.  相似文献   

16.
Nanosized SiC was synthesized by solid state method using silicon and carbon powders followed by non-transferred arc thermal plasma processing. X-ray diffraction (XRD) analysis revealed that activated carbon has highest reactivity while graphite has lowest activity in the crystallization of SiC through solid state method. The reactivity was dependent on surface area of carbon source and activated carbon with highest surface area (590.18 m2 g−1) showed highest reactivity, whereas graphite with least surface area (15.69 m2 g−1) showed lowest reactivity. The free silicon content was decreased with increasing reaction time as well as carbon mole ratio. Scanning electron microscope (SEM) study showed that the shape and size of synthesized SiC depends on the shape and size of carbon source. SiC nanoparticles within 500 nm were formed for carbon black while bigger particles (∼5 μm) were formed for activated carbon and graphite. Plasma processing of these solid–solid synthesized SiC resulted into the formation of well dispersed, ultrafine SiC nanoparticles (30–40 nm) without any structural modification. Thermal plasma processing resulted into the increase in crystallite size of SiC.  相似文献   

17.
H. Xie  F.L. Ng  X.T. Zeng 《Thin solid films》2009,517(17):5066-5069
Spectroscopic ellipsometry (SE) was employed to realize in-situ monitoring and the determination of thermo-optic coefficients (TOC) of thin films by integrating a temperature controlled hot stage to the ellipsometer and applying the empirical relationship of Cauchy between the refractive index and wavelength in the data analysis. Magnetron sputtered titanium oxide thin films of 350 nm thick both as-deposited and post-deposition annealed were prepared on silicon wafers for this investigation. Results of ellipsometric analysis show that as-deposited TiO2 films have a negative TOC of ? 1.21 × 10? 4 K? 1 at 630 nm over the test temperature range 304–378 K. The post-deposition annealing at 923 K for 2 hours leads an increase in film refractive index to 2.29 from 2.17 for as-deposited TiO2 films, and an enhancement in TOC up to ? 2.14 × 10? 4 K? 1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) cross-sectional analysis were performed for film structure characterization.  相似文献   

18.
We compared the characteristics of single Ga:ZnO (GZO) and GZO/Ag/GZO multilayer electrodes for source/drain (S/D) contacts in amorphous In–Ga–Zn–O (a-IGZO)-based thin film transistors (TFTs). Due to the existence of a Ag metallic layer between the GZO layers, the GZO/Ag/GZO multilayer electrode exhibited low sheet resistance (3.95 ohm/sq.) and resistivity (3.32 × 10?5 ohm-cm). The saturation mobility (10.2 cm2 V?1 s?1) of the a-IGZO TFT with GZO/Ag/GZO S/D electrodes is much higher than that attained for the a-IGZO TFT with single GZO S/D electrodes (0.7 cm2 V?1 s?1) due to the lower resistivity of the GZO/Ag/GZO multilayer S/D electrode. Furthermore, it is expected that the high transparency of the GZO/Ag/GZO multilayer will allow for the possible realization of fully transparent a-IGZO TFTs.  相似文献   

19.
In this work, a new highly sensitive and fast method for monitoring methyl morphine in flow-injection systems is introduced. Mathematical methods such as signal integration and fast Fourier transformation used with continuous cyclic voltammetry. It should be stressed that this technique is simple, precise, accurate, time saving and economical. The effects of various parameters on the sensitivity of the detection system were examined. Eventually, it was concluded that the best condition was obtained within the pH value of 2.1, scan rate value of 80 V/s, accumulation potential of 400 mV and accumulation time of 0.4 s.In addition, a special mathematical based numerical method is used for the calculation of the analyte signal and noise reduction. Where, the electrode response was calculated based on the partial and total charge exchanges on the electrode surface, after the background current subtraction from that of noise. In order to increase sensitivity of the method, the currents were integrated over a selected range of potential (including oxidation and reduction of the Au surface electrode), of the recorded CVs. The resulted signal was calculated based on changes in the charge in the CVs. The potential waveform, consisting of two potential steps for electrochemical cleaning, a step for accumulation and a potential ramp for current measurement, was applied to an Au disk microelectrode continuously.In detail, the noteworthy advantages which this method illustrates in comparison with the other reported methods are the following; no oxygen removal is required from the test solution, a sub-nano molar detection limit and the fast determination of any such compound in a wide variety of chromatographic methods. Calibration curve is linear over the concentration range of 0.02–1.1 μM (5.98 × 103–329.2 × 103 pg/ml) (r = 0.997) with a detection limit and a quantitation limit of 0.008 μM (2.39 × 103 pg/ml) and 0.01 μM (2.99 × 103 pg/ml), respectively. Consequently, the method illustrates the requisite accuracy, sensitivity, precision and selectivity to assay methyl morphine in its tablets.  相似文献   

20.
《Materials Letters》2007,61(14-15):3017-3020
Anodic bonding of single crystal silicon wafer with glass and subsequent splitting of the silicon wafer is done by ion-cut technique that involves proton bombardment at desired energies at a dose level > 5 × 1016 cm 2 and then subjected to the bond pair for heat treatment at ∼ 550 °C. Details of the bonding and splitting processes have been discussed in the present study. The high resolution X-ray diffractometry studies have been performed and found that transferred single crystalline thin silicon layer has less crystalline perfection than the original wafer. It suggests that some improvement is still required in the ion-cut technique to improve the crystalline quality of the transferred layer before going to be used for the device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号