首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Biodiesel is a renewable, easily biodegradable, eco-friendly and sustainable alternative energy source. In this investigation, crude oil was extracted from Spirulina maxima microalgae through biochemical conversion method with the help of soxhlet apparatus. Biodiesel production process parameters were optimized through base transesterification. Maximum biodiesel yield achieved was 87.75 % at optimal reaction condition after transesterification, when methanol to oil ratio was 6:1, catalyst loading was 1 % KOH (wt.%), temperature was 65 °C, and stirring speed was 600 rpm for a reaction time of 70 minutes. All the physicochemical properties of the produced biodiesel were determined and compared with the ASTM D6751 specification. Finally, performance and emission of an unmodified diesel engine was evaluated with 20 % and 40 % (v/v) biodiesel blends and compared the results with ordinary Diesel fuel (DF). Using biodiesel blends improves Hydrocarbon (HC) emission by 10-15 % and Carbon monoxide (CO) emission by 9.3-13.9 %. However, Brake specific fuel consumption (BSFC), Oxides of nitrogen (NOX), Carbon dioxide (CO2) and smoke opacity were found to be slightly higher for biodiesel blends, and Brake thermal efficiency (BTE) was found slightly lower than DF. Thus, Spirulina maxima serves as a potential feedstock for biodiesel production and prospective fuel in diesel engine application.

  相似文献   

2.
Biodiesel has become an increasingly significant alternative fuel to replace conventional diesel completely or partially. Although biodiesel has several advantages, such as environmental friendliness, renewability, and reduced emissions, it also has major drawbacks. Tribology is one of the major concerns for biodiesel usage, in which biodiesel lubricity deteriorates by usage and/or by storage because of its oxidative nature. The present study aims to investigate the lubrication behavior of oxidized and pure palm biodiesel blends by using a four-ball tribotester machine. Tests were carried out in diesel, pure biodiesel (B100), their blends (B10 [10% biodiesel in diesel], B20, B30, and B50), and oxidized biodiesel (Oxd B100) and its blends (Oxd B10, Oxd B20, Oxd B30, and Oxd B50). Tests were conducted at room temperature under a normal load of 40 kg for 1 h at 1,200 rpm. Surface analyses were carried out by scanning electron microscopy, energy-dispersive spectrometry, and optical microscopy, and fuel analysis was performed by gas chromatography–mass spectroscopy. Diesel fuel showed the highest wear and friction. Surface deformation, wear, and friction decreased as the biodiesel concentration increased in the blend. Oxidized biodiesel blends showed improved lubricity compared to pure biodiesel and blends. However, Oxd B100 showed higher wear than Oxd B50.  相似文献   

3.
发动机燃用生物柴油的颗粒可溶有机组分及多环芳烃排放   总被引:5,自引:1,他引:5  
以一台车用柴油机为样机,研究发动机燃用生物柴油的常规排放,重点探讨其颗粒(Particulate matter,PM)、可溶有机组分(Soluble organic fraction,SOF)及多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)的排放特性。所用燃油分别为柴油、生物柴油掺混配比为10%的B10燃油。结果表明,与柴油相比,该车用柴油机燃用B10燃油后颗粒、SOF和PAHs的质量排放均有所降低;NOx排放略有增加,HC和CO排放有所下降。B10燃油燃烧的颗粒SOF中醇类、酮类、醚类质量分数下降;脂类、酸类、醛类质量分数上升。在检测到的12种PAHs中,B10燃油有10种质量排放减少,尤其是苯并(a)芘等高环数致癌性的PAHs降幅明显,这表明发动机燃用生物柴油后,排气颗粒的化学成分毒性有所降低。  相似文献   

4.
Owing to the increasing cost of petroleum products, fast depletion of fossil fuel, environmental consideration and stringent emission norms, it is necessary to search for alternative fuels for diesel engines. The alternative fuel can be produced from materials available within the country. Though the vegetable oils can be fuelled for diesel engines, their high viscosities and low volatilities have led to the investigation of its various derivatives such as monoesters, known as bio diesel. It is derived from triglycerides (vegetable oil and animal fates) by transesterification process. It is biodegradable and renewable in nature. Biodiesel can be used more efficiently in semi adiabatic engines (Semi LHR), in which the temperature of the combustion chamber is increased by thermal barrier coating on the piston crown. In this study, the piston crown was coated with ceramic material (TiO2) of about 0.5 mm, by plasma spray method. In this present work, the experiments were carried out with of Pongamia oil methyl (PME) ester and diesel blends (B20 & B100) in a four stroke direct injection diesel engine with and without coated piston at different load conditions. The results revealed 100% bio diesel, an improvement in brake thermal efficiency (BTE) and the brake specific fuel consumption decreased by about 10 % at full load. The exhaust emissions like carbon monoxide (CO) and hydrocarbon (HC) were decreased and the nitrogen oxide (NO) emission increased by 15% with coated engine compared with the uncoated engine with diesel fuel. The peak pressure and heat release rate were increased for the coated engine compared with the standard engine.  相似文献   

5.
车用柴油机瞬态工况的排气颗粒数量   总被引:1,自引:0,他引:1  
以一台轻型车用柴油机为样机,研究发动机定转速增转矩瞬态工况下的颗粒数量排放。所用燃料为纯柴油、纯生物柴油、B20和B50燃油。结果表明:瞬态工况期间,该机燃用柴油的核态颗粒数上升,且先缓后急;聚集态颗粒数由于瞬态工况初期进气滞后,呈先增后降的特点。总颗粒数整体上升,瞬态过程初期聚集态颗粒数起主要作用,而中后期核态颗粒数占主导地位。B20燃油的颗粒数动态变化特性与柴油类似;B50燃油和纯生物柴油的颗粒数动态特性与柴油差异较大,其中总颗粒数和核态颗粒数始终明显高于柴油,聚集态颗粒一直低于柴油,表明此时核态颗粒数在总颗粒数中的支配地位。纯生物柴油在该瞬态工况初期聚集态颗粒数就持续下降,而核态颗粒数快速上升并持续到工况过渡结束。  相似文献   

6.
Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.  相似文献   

7.
There are many methods used to measure the composition of biodiesel in diesel. However, standard methods are limited by high cost and limited precision. Here is proposed a low-cost sensor to determine biodiesel in binary blends of biodiesel/diesel, using the dielectric constant. The concentrations were varied from 0–9% at frequencies from 100–2000 Hz. The correlation curves between the dielectric constant and the biodiesel/diesel concentration included an adjustment factor of 0.992. Moreover, the values of the dielectric constant obtained for each blend were statistically distinct, yielding precise measurements.  相似文献   

8.
The standard configuration parameters of a Variable compression ratio (VCR) engine neglect to give specific execution with biodiesel from distinctive origins. Alongside, a bunch of exploration of diversified biodiesel over performance and emission analysis, extremely constrained work has been taken out on combustion analysis with VCR. This survey was performed to identify the impact of compression ratio on the combustion characteristics of a diesel engine fueled with Calophyllum inophyllum oil methyl ester (COME) and its blends with diesel. Experiments were conducted at a fixed speed of 1500 RPM, full load and at different compression ratios of 16:1, 17:1 and 18:1. Results, revealed that combustion duration of Calophyllum inophyllum oil was more, while the ignition delay period was shorter than that of diesel.  相似文献   

9.
We investigated the effect of intake air enrichment on the performance, combustion, and emission characteristics of a single cylinder direct-injection stationary diesel engine fueled with non- edible alternative fuel, namely, cardanol — diesel — methanol blend (B20M10). The results were compared with baseline diesel operations under standard operating conditions. The bio-fuel blend B20M10 (20% cardanol, 10% Methanol, and 70% diesel) was used as fuel and the combustion, performance, and emission characteristics were investigated by oxygen enriching of intake air with 3, 5, and 7 percentage by weight. With the increase of intake air oxygen concentration, CO, HC, and smoke were found to be decreased. But BTE and NOx emission were considerably increased. The blended fuel B20M10 with 7% oxygen enrichment of intake air was compared with diesel operation. The results show a 0.5% lesser BTE, 28% more NOx emission at full load condition. There is not much variation of smoke emission to be noticed for this fuel combination compared to diesel.  相似文献   

10.
《Lubrication Science》2017,29(1):3-15
Biodiesel is used in many countries as blends with diesel fuel. However, the main obstacle in biodiesel/diesel blends acceptance, commercialization worldwide and using higher blends seems to be its ability to oxidise and increase wear and friction of automotive parts. An experimental investigation has been carried out to analyse the effect of three different anti‐oxidants on the lubricity of palm biodiesel–diesel blend (B30) and to optimise anti‐oxidant concentration based on the performance. The three phenolic anti‐oxidants, butylated hydroxytoluene, propylgallate and pyrogallol, were tested using four‐ball tribotester for 1 h with 1500 rpm and 40 kg load, at ambient temperature. These three anti‐oxidants were used in varying concentrations of 200, 400 and 600 ppm. Propylgallate anti‐oxidant showed most effective results by enhancing the lubricity of the blend in terms of reduced wear and friction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
选用正丁醇、正庚醇和正癸醇作为乙醇-柴油混合燃料助溶剂(混合燃料的体积比为助溶剂:乙醇:柴油=5:20:75)进行相溶性试验,并通过台架试验对比了添加不同助溶剂的混合燃料对柴油机性能及排放的影响.试验结果表明:随着正构醇分子量增加和环境温度上升,混合燃料相溶稳定性增加,燃油经济性变好;HC和NOx排放随助溶剂分子量增加和发动机转速降低而上升.在1 500~2 200 r/min时,zH5E20D75的烟度最低.其余转速下则以ZD5E20D75为最低.  相似文献   

12.
Diesel engines have proven their utility in the transportation, agriculture, and power sectors in India. They are also potential sources of decentralized energy generation for rural electrification. Concerns on the long-term availability of petroleum diesel and the stringent environmental norms have mandated the search for a renewable alternative to diesel fuel to address these problems. Vegetable oils have been considered good alternatives to diesel in the past couple of years. However, there are many issues related to the use of vegetable oils in diesel engine. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This study aims to develop a dual fuel engine test rig for evaluating the potential suitability of Jatropha oil as diesel fuel and for determining the performance and emission characteristics of an engine with Jatropha oil. The experimental results suggest that engine performance using Jatropha oil is slightly inferior to that of diesel fuel. The thermal efficiency of the engine was lower, while the brake-specific fuel consumption was higher with Jatropha oil compared with diesel fuel. The levels of nitrogen oxides (NOx) from Jatropha oil during the entire duration of the experiment were lower than those of diesel fuel. The reduction of NOx was found to be an important characteristic of Jatropha oil as NOx emission is the most harmful gaseous emission from engines; as such, its reduction is always the goal of engine researchers and makers. During the entire experiment, carbon monoxide (CO), hydrocarbon (HC), and carbon dioxide (CO2) emissions in the case of using Jatropha oil were higher than when diesel fuel was used. The higher density and viscosity of Jatropha oil causes lower thermal efficiency and higher brakespecific fuel consumption. The performance and emission characteristics found in this study are significant for the study of replacing diesel fuel from fossils with Jatropha oil in rural India, where the availability of diesel has always been a problem.  相似文献   

13.

The use of biodiesel-blended fuels in diesel engines improves the engine performance parameters and the partial recovery of incomplete combustion products, while also increasing the level of NOx emissions. In this study; biodiesel obtained through the transesterification of waste chicken frying oil was mixed with diesel fuel (90% diesel + 10% biodiesel-B10), and was then used as fuel in a direct injection diesel engine. To reduce the increased NOx emissions caused by the use of B10 fuel, the steam injection method (which is one of the NOx reduction methods) was applied. Steam was injected into the intake manifold at different ratios (5%-S5, 10%-S10 and 15%-S15) and at the time of the induction stroke with the aid of an electronically controlled system. Based on the study results, it was observed that steam injection into the engine using B10 fuel improved both the engine performance and the exhaust emission parameters. It was determined that the S15 steam injection ratio resulted in the best engine performance and emissions parameters. In comparison to STD fuel; the highest increase observed at the S15 steam injection ratio in the effective engine power was 2.2%, while the highest decrease in the specific fuel consumption was 3.4%, the highest increase in the effective efficiency was 3.5%, and the highest decrease in NOx emissions was 13.7%.

  相似文献   

14.
The dilution of biogenic fuels into lubricating engine oils often leads to a shortening of the recommended oil drains (between 30% and 60%) and an increase in wear. The large number of overlapping and influencing factors, of which dilution and polymerization of fuel components in the engine oil are emphasised, makes it difficult to find a uniform solution to prevent failures in the various applications. Insofar single solutions for the different types of biofuels are needed. The contribution of base oil chemistry and additives as well as triboactive materials is featured to deal with the adverse effects of biofuels. In the frame of the European Commission (EC)‐funded project ‘cleanengine’, tentative engine oils based on esters with a content of renewables and polyglycols are formulated to increase the lubricant's tolerance in engines fuelled with biofuel‐based blends, with the aim of ensuring required lubricating and wear protection performance while keeping oil drain intervals unchanged. The present paper focuses on four‐stroke diesel applications, fuelled by biodiesel (fatty acid methyl ester — FAME) as well as by rapeseed oil and Jatropha oil (pure vegetable oils, triglycerides), together with relevant blends of those biofuels and conventional diesel fuel. This paper screens the functional profile (in particular rheological, toxicological, bio‐compatibility, tribological and biofuels affinity) of lube families with respect to biofuel contamination. Moreover, this is followed by the contributions of piston ring and liner materials as well as thin film coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The use of renewable, bio-based fuels has become increasingly widespread in recent years, with a major example being biodiesel, a bio-derived alternative to Number 2 diesel fuel. The increased usage of biodiesel gives rise to an augmented need to understand its tribological effects on critical engine components. This study focused on determining the tribological performance of soybean-based B100 (i.e., pure) biodiesel within a fuel injector with varying oscillating frequency by performing a series of linear reciprocating tribological tests of biodiesel-lubricated interfaces with varying reciprocating frequency. Comparison of friction coefficient variation with reciprocating frequency indicated a transition from boundary lubrication to hydrodynamic lubrication as the frequency increased, while hysteresis loop and energy loss observations showed a transition between full stick and partial slip contact with increasing frequency. However, observations of induced wear showed the wear to increase with increasing frequency, most likely due to the augmented number of sliding cycles as well as an increased degree of interfacial slip.  相似文献   

16.

The present work is dedicated to the comparative experimental study of biodiesel-ethanol blends in a compression ignition engine using TiO2 (Titanium oxide) nanoparticle, ZrO2 (Zirconium oxide) nanoparticle and DEE (Diethyl ether) additives. The test fuels used are a blend of biodiesel (80%) -ethanol (20%) (denoted as BE), a blend of BE with 25 ppm Titanium oxide nanoparticle (denoted as BE-Ti), a blend of BE with 25 ppm Zirconium oxide nanoparticle (denoted as BE-Zr) and a blend of BE with 50 ml Diethyl ether (denoted as BE-DEE). Addition of nanoparticles increases the oxidation rate, reduces the light-off temperature and creates large contact surface area with the base fuel thereby enhancing the combustion with minimal emissions. Experimental results shown that addition of Titanium nanoparticles increased NOx, HC and smoke with lowered BSFC and CO. Whereas addition of Zirconium nanoparticles increases BSFC and HC emissions with lowered CO, CO2 and smoke emissions in comparison with BE blends. DEE addition to BE blends improved the heat release rate and increased HC, CO emissions were observed with lowered BSFC, NOx and smoke. Simultaneous reduction of NOx and smoke indicates the effect of DEE on Low temperature combustion (LTC).

  相似文献   

17.
针对甲醇、生物柴油和聚甲氧基二甲醚PODE的优势,为了改善经济性,在一台CY25柴油机上分析不同引燃燃料对甲醇预混合气引燃燃烧模式燃烧特性的影响。试验结果表明:PODE引燃模式的排放特性较差,CO浓度相较生物柴油模式可高达2-3倍。在大甲醇质量比下HC排放浓度可高达生物柴油的5倍。甲醇质量比较小时促进了NO_(X)生成,增大质量比可以降低NO_(X)浓度。生物柴油引燃模式的排放特性随甲醇质量比变化较平稳,PODE引燃模式则随甲醇质量比变化增长较快。  相似文献   

18.
Dilution of engine oil occurs when fuel is injected late in the combustion cycle to regenerate the diesel particulate filter used for trapping particulate emissions. Fuel dilution reduces oil viscosity and the concentration of engine oil additives, potentially compromising lubricant performance. Biodiesel usage may compound these issues due to its oxidative instability, and its higher boiling point compared to mineral diesel potentially causes it to concentrate more in the oil sump.

In this work, different amounts of mineral diesel and biodiesel (soy methyl ester, SME) were combined with 15W-40 CJ-4 diesel engine oil in laboratory oil aging experiments. Fuel was added and oil samples were withdrawn at periodic intervals. The oils were analyzed using typical oil analysis procedures to determine their condition, and wear evaluations under boundary lubricating conditions were determined using a high-frequency reciprocating rig (HFRR). Results showed that fuel dilution accelerated engine oil degradation, with biodiesel having a larger effect. However, friction remained unchanged with dilution, and wear actually decreased for fuel-diluted oils after 48 h of aging compared to aging without fuel dilution. Examination of the tribofilms by ultraviolet (UV) and visible Raman spectroscopy as well as Auger electron spectroscopy showed that additional carbon-containing components were present on tribofilms formed from fuel-diluted oils. These fuel-derived components may be responsible for the decreased wear observed.  相似文献   

19.
为解决柴油醇在应用中存在的相分离、十六烷值低下等问题,提出一种由中碳醇 低分子醚 高分子聚合物 有机硝酸酯构成的复合添加剂.结果表明:添加1%~2%容积百分比的复合添加剂后,柴油醇的溶解度明显提高;并且发动机的冷启动试验也表明加入复合添加剂后,柴油醇的着火性能己同于柴油的水平.由发动机台架试验还研究了柴油和不同乙醇掺合率的柴油醇给与发动机的燃料经济性、排气烟度和THC、CO、NOx气体排放的影响.结果表明:柴油醇以重量计的比油耗较柴油的相应地增加,但以能量计的有效热效率却较柴油的略有提高;各种乙醇掺合率下的排气烟度都大幅地降低;NOx排放浓度则随负荷增加而逐渐增大,但在高负荷工况时,随乙醇掺合率的增加,NOx排放浓度呈下降趋势.  相似文献   

20.

Biodiesel is an environmentally friendly fuel that can replace diesel in compression ignition engines without changing the engine structure. Biodiesel is typically manufactured from vegetable oils and animal fats, which give the fuel its oxidation stability and cold-flow properties, respectively. However, the kinematic viscosity of biodiesel can cause engine performance problems such as incomplete combustion and sludge formation due to insufficient fuel atomization. To address these problems, in this study, a pretreatment technology that lowers the kinematic viscosity of biodiesel made from blended animal fat and vegetable oil was developed. The results of application of the pretreated fuel to a single-cylinder power tiller engine indicated that it produced 88.3–99.8 % of the brake power produced by conventional diesel. In addition, although the pretreated biodiesel exhaust included increased amounts of nitrogen oxides and carbon dioxide emissions, the proposed fuel also decreased the amounts of hydrocarbon and carbon monoxide emissions compared with conventional diesel emissions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号