首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现有大部分的无线自组网广播协议采用最小虚拟骨干子网进行全网广播,能最小化广播的总发送次数。但是,由于未考虑无线链路的不可靠性,这些协议在实际网络中的广播效率并不高。为此,提出了一种高效的全网可靠广播协议(ENWRB),该协议采用网络编码技术减少单跳广播的重传次数,并通过一种基于链路感知的虚拟骨干网选择算法产生更高效的广播骨干网。仿真结果表明,在确保所有节点成功接收广播消息的相同前提下,ENWRB协议的效率显著高于HCA(Hierarchical CDS-based Algorithm)协议。  相似文献   

2.
This paper considers the channel assignment problem in a multi‐channel MANET environment. We propose a scheme called GRID, by which a mobile host can easily determine which channel to use based on its current location. In fact, following the GSM style, our GRID spends no communication cost to allocate channels to mobile hosts since channel assignment is purely determined by hosts' physical locations. We show that this can improve the channel reuse ratio. We then propose a multi‐channel MAC protocol, which integrates GRID. Our protocol is characterized by the following features: (i) it follows an ‘on‐demand’ style to access the medium and thus a mobile host will occupy a channel only when necessary, (ii) the number of channels required is independent of the network topology, and (iii) no form of clock synchronization is required. On the other hand, most existing protocols assign channels to a host statically even if it has no intention to transmit [IEEE/ACM Trans. Networks 1995; 3 (4):441–449; 1993; 1 (6): 668–677; IEEE J. Selected Areas Commun. 1999; 17 (8):1345–1352], require a number of channels which is a function of the maximum connectivity [IEEE/ACM Trans. Networks 1995; 3 (4):441–449; 1993; 1 (6): 668–677; Proceedings of IEEE MILCOM'97, November 1997; IEEE J. Selected Areas Commun. 1999; 17 (8):1345–1352], or necessitate a clock synchronization among all hosts in the MANET [IEEE J. Selected Areas Commun. 1999; 17 (8):1345–1352; Proceedings of IEEE INFOCOM'99, October 1999]. Through simulations, we demonstrate the advantages of our protocol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Using directional antennas in wireless mobile ad hoc networks can greatly improve the transmission range as well as the spatial reuse. However, it will also cause some problems such as deafness problem and hidden terminal problem, which greatly impair the network performance. This paper first proposes a MAC protocol called Selectively Directional MAC (SDMAC) that can effectively address these problems and significantly improve the network throughput. Then two improvements on SDMAC are proposed. The first one is to improve the network throughput by scheduling the packets in the queue (a scheme called Q-SDMAC), thus the head-of-line (HOL) blocking problem can be addressed. The second one is to relax the assumption that each node knows the relative directions of its neighboring nodes and use caches to buffer those relative directions (a scheme named Q-SDMAC using cache). Extensive simulations show that: (1) SDMAC can achieve much better performance than the existing MAC protocols using directional antennas; (2) The network throughput can be significantly improved by scheduling the packets in the queue; (3) Using caches can still achieve high network throughput when nodes are moving; and (4) Network throughput decreases when directional antennas have side lobe gain.
Yuguang Fang (Corresponding author)Email:
  相似文献   

4.
设计无人机自组网媒体接入控制(Medium Access Control,MAC)协议时,需要考虑其控制开销和数据传输的可靠性。鉴于此,结合现有无线自组网多跳时分多址接入(Time Division Multiple Access,TDMA)协议和无人机自组网特点,提出了一种高效可靠的无人机自组网多跳TDMA协议。首先采用高效负载均衡的时隙请求信息上传机制,选择一个负载较小的节点转发节点时隙请求信息;然后根据相互通信的父节点删除重复节点的时隙请求信息,减少相同节点的时隙请求信息转发次数;最后通过实时更新节点时隙请求信息机制,提高节点时隙请求信息传输的可靠性。仿真结果表明,该协议在数据传输成功率、平均时延、控制开销方面优于现有协议,可较好地应用在无人机自组网中。  相似文献   

5.
Transmission-scheduling protocols can support contention-free link-level broadcast transmissions and delay sensitive traffic in mobile, multiple-hop packet radio networks. Use of transmission-scheduling protocols, however, can be very inefficient in mobile environments due to the difficulty in adapting transmission schedules. The paper defines a new adaptive and distributed protocol that permits a terminal to adapt transmission assignments to changes in topology using information it collects from its local neighborhood only. Because global coordination among all the terminals is not required and changes to transmission assignments are distributed to nearby terminals only, the protocol can adapt quickly to changes in the network connectivity. The two key parameters that affect the ability of the protocol to adapt to changes in connectivity are the rate of connectivity changes and the number of terminals near the connectivity changes. Using simulation, we determine the ranges for these parameters for which our adaptive protocol can maintain collision-free schedules with an acceptable level of overhead. The stability of the protocol is also characterized by showing that the protocol can quickly return to a collision-free transmission schedule after a period of very rapid changes in connectivity. Our channel-access protocol does not require a contention-based random-access phase to adapt the transmission schedules, and thus its ability to adapt quickly does not deteriorate with an increase in the traffic load.  相似文献   

6.
Recently more and more research interest focuses on the energy efficient routing in mobile ad hoc networks and many related routing algorithms are reported. In this paper, a new optimized priority based energy efficient routing algorithm is presented and priority is added to the existing routing algorithm according to the residual energy proportion of the nodes. Lower residual energy means lower priority and the nodes with lower priority are less likely to forward packets to other nodes. The algorithm needs no global information of the networks and only a little modification is needed to the existing algorithm, so it is practical to be implemented. The algorithm can improve the performance of routing discovery, routing maintenance and cache management at the same time. Some optimization strategy is taken to reduce the network overhead and the lifetime of the network is much longer and the network with our algorithm can transfer much more effective data. Simulation with NS-2 is done and satisfying results are obtained with this algorithm. The results show that the algorithm is efficient.  相似文献   

7.
Cooperative diversity is proposed to combat the detrimental effects of channel fading. In this paper, we investigate the effectiveness of cooperative diversity in interference limited ad hoc networks. The negative effects due to relay blocking on the network throughput are investigated. We show that the relay blocking problem is mainly dependent on the relay selection criterion. To overcome this problem, we propose a new cooperative diversity technique based on a modified IEEE 802.11 Medium Access Control (MAC) protocol. The throughput performance of the proposed MAC protocol is analyzed using a random structured network where nodes are assumed to be equipped with multiple antennas. In our simulations, we consider both single‐ and multiple‐relay scenarios over fading channels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on investigating immunological principles in designing a multi-agent security architecture for intrusion detection and response in mobile ad hoc networks. In this approach, the immunity-based agents monitor the situation in the network. These agents can take appropriate actions according to the underlying security policies. Specifically, their activities are coordinated in a hierarchical fashion while sensing, communicating, decision and generating responses. Such an agent can learn and adapt to its environment dynamically and can detect both known and unknown intrusions. The proposed intrusion detection architecture is designed to be flexible, extendible, and adaptable that can perform real-time monitoring. This paper provides the conceptual view and a general framework of the proposed system. In the end, the architecture is illustrated by an example to show it can prevent the attack efficiently.  相似文献   

9.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

10.
Mobile ad hoc networks (MANETs) are characterized by random, multi‐hop topologies that do not have a centralized coordinating entity or a fixed infrastructure that may change rapidly over time. In addition, mobile nodes operate with portable and finite power sources. In this work, we propose an energy‐efficient routing protocol for MANETs to minimize energy consumption and increase the network's consistency. Traditional works mainly focused on the shortest path‐based schemes to minimize energy, which might result into network failure because some nodes might exhaust fast as they are used repetitively, while some other nodes might not be used at all. This can lead to energy imbalance and to network life reduction. We propose an energy‐efficient ad hoc on‐demand routing protocol that balances energy load among nodes so that a minimum energy level is maintained among nodes and the network life increases. We focused on increasing the network longevity by distributing energy consumption in the network. We also compared the simulation results with a popular existing on‐demand routing protocol in this area, AODV, to establish the superiority of our approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we address the problem of broadcast routing in mobile ad hoc networks from the viewpoint of energy efficiency. In an ad hoc wireless network, each node runs on a local energy source which has a limited energy lifespan. Thus, energy conservation is a critical issue in ad hoc networks. One approach for energy conservation is to establish routes which require lowest total energy consumption. This optimization problem is referred as the minimum‐energy broadcast routing problem (MEBRP). In this paper, we propose new efficient algorithms for the construction of energy‐efficient trees for broadcast in mobile ad hoc networks. These algorithms exploit the broadcast nature of the wireless channel, and address the need for energy‐efficient operations. Empirical studies show that our algorithms are able to achieve better performance than algorithms that have been developed for MEBRP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In emerging wireless networks, cooperative retransmission is employed to replace packet retransmission between a pair of sender and receiver with poor channel condition. A cooperative MAC protocol which utilizes such benefit is proposed in this paper to improve the network performance in mobile ad hoc networks. In the proposed protocol, relay nodes between sender and receiver are used if the sender cannot communicate with the receiver reliably. Furthermore, the receiver may also stop forwarding the received data frame if the frame is received by the next‐hop receiver on the route to the final destination node. Simulation results show that the proposed protocol outperforms previous works in terms of increased transmission reliability and reduced delay time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Hui  J.J.   《Ad hoc Networks》2010,8(2):165-180
In this paper, we investigate the low coverage problem of efficient broadcast protocols in wireless ad hoc networks with realistic physical layer models. To minimize energy consumption, efficient protocols aim to select small set of forward nodes and minimum transmission radii. In ideal physical layer model, nodes within forward nodes’ transmission ranges can definitely receive packets; therefore energy efficient protocols can guarantee full coverage for broadcasting. However, in networks with a realistic physical layer, nodes can only receive packets with probability. We present an analytical model to show that the transmission radii used for nodes can be used to establish a tradeoff between minimizing energy consumption and ensuring network coverage. We then propose a mechanism called redundant radius, which involves using two transmission radii, to form a buffer zone that guarantees the availability of logical links in the physical network, one for broadcast tree calculation and the other for actual data transmission. With this mechanism, we extend well-known centralized protocols, BIP and DBIP, and corresponding localized protocols, LBIP and LDBIP. The effectiveness of the proposed scheme in improving network coverage is validated analytically and by simulation.  相似文献   

14.
移动分布式无线网络中具有QoS保证的UPMA协议   总被引:10,自引:1,他引:10  
该文基于有效竞争预约接入、无冲突轮询传输的思想提出了支持节点移动性、多跳网络结构和服务质量(QoS)的依据用户妥善安排的多址接入(UPMA)协议。它大大提高了信道的使用效率,保证了发送节点能快速接入信道,同时,最大程度地保证所有实时业务的时延和带宽要求。最后,我们考察了它对Internet数据业务的支持性能。  相似文献   

15.
Contention-based forwarding for mobile ad hoc networks   总被引:10,自引:0,他引:10  
Holger  Jrg  Michael  Martin  Hannes 《Ad hoc Networks》2003,1(4):351-369
Existing position-based unicast routing algorithms which forward packets in the geographic direction of the destination require that the forwarding node knows the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages each node sends out periodically.

Due to mobility, the information that a node receives about its neighbors becomes outdated, leading either to a significant decrease in the packet delivery rate or to a steep increase in load on the wireless channel as node mobility increases. In this paper, we propose a mechanism to perform position-based unicast forwarding without the help of beacons. In our contention-based forwarding scheme (CBF) the next hop is selected through a distributed contention process based on the actual positions of all current neighbors. For the contention process, CBF makes use of biased timers. To avoid packet duplication, the first node that is selected suppresses the selection of further nodes. We propose three suppression strategies which vary with respect to forwarding efficiency and suppression characteristics. We analyze the behavior of CBF with all three suppression strategies and compare it to an existing greedy position-based routing approach by means of simulation with ns-2. Our results show that CBF significantly reduces the load on the wireless channel required to achieve a specific delivery rate compared to the load a beacon-based greedy forwarding strategy generates.  相似文献   


16.
OLSR performance measurement in a military mobile ad hoc network   总被引:2,自引:0,他引:2  
Wireless ad hoc networks are autonomous, self-configurating and adaptive. Thus, such networks are excellent candidates for military tactical networks, where their ability to be operational rapidly and without any centralized entity is essential. As radio coverage is usually limited, multihop routing is often needed; this is achieved by an ad hoc routing protocol supporting nodes mobility. In this paper, we present performance measurements of the Optimized Link State Routing (OLSR) routing protocol, having the status of IETF RFC. The measurements are performed at CELAR site on a platform representative of military scenarios in urban areas. This platform consists of ten routers, eight PDAs and laptops using a IEEE 802.11b radio interface and implementing OLSR v7. Some nodes are mobile within vehicles. The emphasis of the measurements is on the performance of the network (route repair, network convergence speed, user traffic performance) in presence of this mobility.  相似文献   

17.
Quality of service (QoS) routing plays an important role in QoS provisioning for mobile ad hoc networks. This work studies the issue of route selection subject to QoS constraint(s). Our method searches for alternate routes with satisfied QoS requirement(s) to accommodate each communication request when the shortest path connecting the source–destination pair of the request is not qualified. In order to effectively reduce protocol overhead, a directed search mechanism is designed to limit the breadth of the searching scope, which aims at achieving a graceful tradeoff between the success probability in QoS route acquisition and communication overhead. Efficient hop‐by‐hop routing protocols are designed for route selection subject to delay and bandwidth constraint, respectively. Simulation results show that the designed protocols can achieve high performance in acquiring QoS paths and in efficient resource utilization with low control overhead. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Hend   《Ad hoc Networks》2006,4(1):138-146
Smart antennas have the advantage over traditional omnidirectional antennas of being able to orientate radio signals into the concerned directions in either transmission mode or in reception mode. Since the omnidirectional antenna use in broadcasting over the whole network is the source of an excessive redundancy of broadcast packet receptions within each node, we suggest using smart antennas to improve the medium usage in the case of broadcasting. We propose to adapt a current broadcast protocol to smart antenna applications and present two smart antenna broadcast approaches. We also present a comparative performance study between omnidirectional and smart antennas when broadcasting. We show that we can improve battery power utilisation and bandwidth usage with smart antennas.  相似文献   

19.
Robust position-based routing for wireless ad hoc networks   总被引:1,自引:0,他引:1  
We consider a wireless ad hoc network composed of a set of wireless nodes distributed in a two dimensional plane. Several routing protocols based on the positions of the mobile hosts have been proposed in the literature. A typical assumption in these protocols is that all wireless nodes have uniform transmission regions modeled by unit disk centered at each wireless node. However, all these protocols are likely to fail if the transmission ranges of the mobile hosts vary due to natural or man-made obstacles or weather conditions. These protocols may fail because either some connections that are used by routing protocols do not exist, which effectively results in disconnecting the network, or the use of some connections causes livelocks. In this paper, we describe a robust routing protocol that tolerates up to roughly 40% of variation in the transmission ranges of the mobile hosts. More precisely, our protocol guarantees message delivery in a connected ad hoc network whenever the ratio of the maximum transmission range to the minimum transmission range is at most .  相似文献   

20.
Energy use is a crucial design concern in wireless ad hoc networks since wireless terminals are typically battery-operated. The design objectives of energy-aware routing are two folds: Selecting energy-efficient paths and minimizing the protocol overhead incurred for acquiring such paths. To achieve these goals simultaneously, we present the design of several on-demand energy-aware routing protocols. The key idea behind our design is to adaptively select the subset of nodes that are required to involve in a route-searching process in order to acquire a high residual-energy path and/or the degree to which nodes are required to participate in the process of searching for a low-power path in networks wherein nodes have transmission power adjusting capability. Analytical and simulation results are given to demonstrate the high performance of the designed protocols in energy-efficient utilization as well as in reducing the protocol overhead incurred in acquiring energy-efficient routes. Baoxian Zhang received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Northern Jiaotong University, Beijing, China in 1994, 1997, and 2000, respectively. From January 2001 to August 2002, he was working with Department of Electrical and Computer Engineering at Queen’s University in Kingston as a postdoctoral fellow. He is currently a research scientist with the School of Information Technology and Engineering (SITE) of University of Ottawa in Ottawa, Ontario, Canada. He has published over 40 refereed technical papers in international journals and conference proceedings. His research interests include routing algorithm and protocol design, QoS management, wireless ad hoc and sensor networks, survivable optical networks, multicast communications, and performance evaluation. He is a member of the IEEE. Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queen’s University (1979-2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977-79). He has spent three sabbatical years also at Nortel Networks (1986-87, 1993-94, and 2000-01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995-97) and IEEE Communications Society Director of Magazines (1998-99) and Chair of the Awards Committee (2002-2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS’2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR’2002 and the IEEE ISMVL’1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990) and Fellow of the Canadian Academy of Engineering (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号