首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
辽宁省可再生能源温室气体减排潜力分析   总被引:1,自引:0,他引:1  
分析了人类活动排放过多温室气体对全球气候造成的影响.阐述了辽宁省可再生能源领域中太阳能、风能、生物质能及水能的发展现状;展望了辽宁省可再生能源的发展前景.通过对辽宁省可再生能源领域的温室气体减排潜力的分析,提出了风力发电和太阳能利用是辽宁省可再生能源优先发展领域.  相似文献   

2.
可再生能源发电技术温室气体减排效益分析   总被引:20,自引:0,他引:20  
文章定量分析了生物质气化发电、沼气发电、风力发电、太阳能光伏发电等可再生能源发电技术的温室气体减排效益。分析结果表明,生物质气化发电具有最好的经济和环境效益。  相似文献   

3.
温室气体减排与21世纪我国的能源发展战略   总被引:6,自引:0,他引:6  
介绍了近10年来国际社会致力于温室气体减排所做的努力,分析了《京都议定书》提出的三个灵活性机制及其最新执行情况,在此基础上,提出了当前温室气体减排所面临的机遇与挑战,并结合温室气体减排的国际形势,分析和预测了21世纪我国能源的战略与方向。  相似文献   

4.
广东省温室气体减排潜力分析与预测   总被引:2,自引:0,他引:2  
从《联合国气候变化框架公约》的机制与原理出发,对广东省主要温室气体(GHG)排放部门的现状进行了系统分析,并对广东省未来温室气体的排放进行了预测;提出了利用清洁发展机制(CDM)来开展广东省减排温室气体项目的方向,为广东省开展节能环保型项目提供了参考建议。  相似文献   

5.
<正> 全球气候变暖是当今世界瞩目的重大环境问题。据专家们研究,造成温室效应的气体有50%左右来自全世界矿物燃料的燃烧。我国是世界上矿物燃料的消费大国,1988年的消费最为876Mtce,占同年世界矿物燃料消费量的8.6%。电力行业是我国矿物燃料消费的主要部门之一,1988年的消费量为168Mtce,其中煤占86.8%。电力行业CO_2  相似文献   

6.
对比分析中美能源消费结构、各类能源消费量、二氧化碳排放量的比例及其变动趋势。中美各地能源在工业、商业、交通和居民消费4大产业部门间的消费结构。中国2005年42个产业部门各类能源的消费结构,测算中国2010年可再生能源政策的减排效应和重点行业节能的减排效应,节能减排的政策建议。  相似文献   

7.
对比分析中美能源消费结构、各类能源消费量、二氧化碳排放量的比例及其变动趋势。中美各类能源在工业、商业、交通和居民消费4大产业部门间的消费结构。中国2005年42个产业部门各类能源的消费结构,测算中国2010年可再生能源政策钧减排效应和重点行业节能的减排效应,节能减排的政策建议。  相似文献   

8.
中美温室气体排放趋势及我国节能减排潜力的测算(中)   总被引:1,自引:0,他引:1  
对比分析中美能源消费结构,各类能源消费量,二氧化碳排放量的比例及其变动趋势。中美各类能源在工业、商业、交通和居民消费4大产业部门间的消费结构。中国2005年42个产业部门各类能源的消费结构,预算中国2010年可再生能源政策的减排效应和重点行业节能的减排效应,节能减排的政策建议。  相似文献   

9.
对比分析中美能源消费结构、各类能源消费量、二氧化碳排放量的比例及其变动趋势。中美各类能源在工业、商业、交通和居民消费4大产业部门间的消费结构。中国2005年42个产业部门各类能源的消费结构,测算中国2010年可再生能源政策的减排效应和重点行业节能的减排效应,节能减排的政策建议。  相似文献   

10.
中国能源温室气体排放与可持续发展   总被引:2,自引:0,他引:2  
全球气候变化对经济社会的可持续发展带来严重挑战。影响温室气体排放的因素主要有经济增长、人口、能源消费强度、能源结构等。预计中国2005~2020年GDP年均增长率为8.0%~8.6%。基准情景下,中国2050年能源需求总量达到66.19×108t标煤,人均能源消费量4.4t标煤,CO2排放量117.3×108t,能源消费弹性系数0.42,2020年CO2排放强度比2005年下降43%~48%;减排情景下,中国2050年能源消费量50.4×108t标煤,人均能源消费量3.5t标煤左右,CO2排放量70.7×108t,人均CO2排放量4.8t左右,能源消费弹性系数0.32,2020年CO2排放强度比2005年下降48%~52%,若能实现减排情景,则意味着中国已做到了低碳经济;而从可预见的技术条件以及清洁能源和可再生能源利用的规模来看,实现低碳情景难度很大。中国正处于工业化中期的发展阶段,能源需求增加是客观存在的,应力争转变经济增长方式,优化产业与产品结构,减少与控制高耗能产品出口,提高非化石能源比重和能源利用效率。发展中国家在应对全球气候变化行动中应制定中、短期目标与长期目标。中、短期目标即相对减排,中国政府制定的2020年CO2排放强度相对2005年降低40%~45%的约束性目标就属于相对减排;长期目标指的是当发展中国家实现工业化后,若全球技术发展迅猛,这时发展中国家温室气体的总量控制与减排才有可能做到。  相似文献   

11.
China has become the third largest energy user in the world, and its coal-dominated energy structure implies high CO2 emissions. The amount of CO2 emissions from China may surpass that of the United States within 20–30 years, making China the world's largest source of greenhouse gases by 2020.

Currently, renewable energy resources (except for hydropower) account for only a fraction of China's total energy consumption. However, China has abundant solar energy resources. More than two thirds of China receives an annual total insolation that exceeds 5.9 GJ/m2 (1,639 kWh/m2) with more than 2,200 hours of sunshine a year. Wind energy potential in China is about 3,200 GW, of which 253 GW is deemed technically exploitable. China has a wide range of biomass resources that can be used for energy supply and high temperature geothermal resources suitable for power generation located mainly in Tibet and Yunnan provinces.

Renewable energy technologies have been actively deployed in China. Although PV power stations have not being connected to the national grid, total installed capacity was 3 MW in 1994. Solar water heaters are by far the largest solar thermal application in China with a total installed capacity of 3.3 million m2 in 1994. By the end of 1995, total installed capacity of grid-connected wind power plants had reached 36 MW. Also, over 140,000 small wind generators ranging in size from 50 W to 5 kW have been deployed with a total installed capacity of 17 MW. China is a world leader in the development and application of anaerobic technologies for the production of fuel gas and waste treatment and has by far the largest biomass gasification R&D capacity in the.

Although renewable energy is projected to play a small role in future electricity generation, it is expected to be much more significant in the total energy sector. Under one scenario, renewable energy other than hydro provides up to 4% of the total energy supply and 88 million tons of carbon emission reduction by 2020. The estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provide strong arguments for the development of renewable energy resources.  相似文献   


12.
Biogas utilization has undergone great development in rural China since the government systematically popularized household-scale biogas digesters for meeting the rural energy needs in the 1970s. In order to comprehensively estimate the significance of biogas utilization on rural energy development and greenhouse gas emission reduction, all types of energy sources, including straw, fuelwood, coal, refined oil, electricity, LPG, natural gas, and coal gas, which were substituted by biogas, were analyzed based on the amount of consumption for the years from 1991 to 2005. It was found that biogas provided 832749.13 TJ of energy for millions of households. By the employment of biogas digesters, reduction of greenhouse gases (GHG) was estimated to be 73157.59 Gg CO2 equivalents (CO2-eq), and the emission by the biogas combustion was only 36372.75 Gg CO2-eq of GHG. Energy substitution and manure management, working in combination, had reduced the GHG emission efficiently. The majority of the emission reduction was achieved by energy substitution that reduced 84243.94 Gg CO2, 3560.01 Gg CO2-eq of CH4 and 260.08 Gg CO2-eq of N2O emission. It was also predicted that the total production of biogas would reach to 15.6 billion m3 in the year 2010 and 38.5 billion m3 in the year 2020, respectively. As a result, the GHG emission reductions are expected to reach 28991.04 and 46794.90 Gg CO2-eq, respectively.  相似文献   

13.
Climate change has become a global issue. Almost all countries, including China, are now considering adopting policies and measures to reduce greenhouse gas (GHG) emissions. The power generation sector, as a key source of GHG emissions, will also have significant potential for GHG mitigation. One of the key options is to use new energy technologies with higher energy efficiencies and lower carbon emissions. In this article, we use an energy technology model, MESSAGE-China, to analyze the trend of key new power generation technologies and their contributions to GHG mitigation in China. We expect that the traditional renewable technologies, high-efficiency coal power generation and nuclear power will contribute substantially to GHG mitigation in the short term, and that solar power, biomass energy and carbon capture and storage (CCS) will become more important in the middle and long term. In the meantime, in order to fully bring the role of technology progress into play, China needs to enhance the transfer and absorption of international advanced technologies and independently strengthen her ability in research, demonstration and application of new power generation technologies.  相似文献   

14.
The potential and utilization of renewable energy technologies (RETs), and energy analysis in Lesotho with emphasis on the contribution of solar energy technologies (SETs) is presented. The heavy reliance of the country on imported fossil fuel coupled with the growing demand for electricity and declining wood fuel supplies call for alternative sources of energy. Taking the average global solar radiation that ranges from 15 to 20 MJ/m2 and cognizant of the short falls of other renewable energy sources in Lesotho, this paper focuses on the application of solar energy and associated developmental issues. The paper provides a statistical analysis of the energy demand and identifies areas of further growth for SETs. Various application areas of solar energy and their contribution to development in Lesotho together with future prospects for use of solar energy are also discussed. An analysis of the relative merits of using photovoltaic (PV) devices over other renewable energy sources in Lesotho is presented. It is argued that with proper economic support and utilization of efficient RETs, developing countries like Lesotho can meet their basic energy demands and alleviate the problems of energy shortages.  相似文献   

15.
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energy–environment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of techno–economic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socio–environmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.  相似文献   

16.
Energy models are considered as valuable tools to assess the impact of various energy and environment policies. The ACROPOLIS initiative, supported by the European Commission and the International Energy Agency, used up to 15 energy models to simulate and evaluate selected policy measures and instruments and then compare their impacts on energy systems essentially in terms of costs of greenhouse gas emissions (GHG) reduction and energy technology choice. Four case studies are formulated considering policies and measures on renewable portfolio schemes and internationally tradable green certificates, emissions trading and global GHG abatement target, energy efficiency standards and internalisation of external costs. The main focus of the project is on the electricity sector. From a large set of quantified results, ACROPOLIS provides an international scientific consensus, on some key issues, which could be useful in assessing and designing energy and environment policies at the world, European and national/regional levels. It concludes that the Kyoto targets (and their continuation beyond 2010 in specific scenarios) could be achieved at a cost around 1% of GDP through global emissions trading, indicating also that this flexibility mechanism is a more cost-effective instrument for GHG mitigation than meeting the goal domestically without trade. It demonstrates that internalising external costs through a price increase reduces local pollutants (SOx, NOx, and others) and it produces other benefits such as triggering the penetration of clean technologies in addition to the curbing of CO2 emissions.  相似文献   

17.
Carbon stocks were assessed in three archetypal forest ecosystems in the province of Salta, Argentina, namely Yungas, Chaco, and shrublands located around Chaco. Over a total area of about 7000 m2, detailed measurements of woody biomass were conducted using structural information such as diameter at breast height (dbh), total height, and stem height. At the same time, the wet weight of herbaceous, shrubs, and litter was registered within that area. Soil samples were also collected to determine parameters such as bulk density and organic carbon. The above-ground tree biomass (AGB) was quantified by two non-destructive methods. This biomass was expressed from each reservoir studied in t.ha−1 and the carbon content was then calculated using a factor of 0.5. Carbon stocks in the ecosystems studied were 162, 92, and 48 tC.ha−1 for Yungas, Chaco, and shrublands, respectively. Our results show that carbon is concentrated in the soil or as AGB. The latter is the most important reservoir in Yungas, while the soil plays this role in the other two, drier environments. In the province of Salta, native forests play a significant role in the mitigation of greenhouse gases. Our results reveal the magnitude of carbon stocks in some characteristic regional native forests, and estimate their carbon sequestration potential. These results could be useful to inform policy makers in charge of negotiations related to conservation and sustainable management of native forests, and be a relevant input for the formulation of more comprehensive land use planning processes in the region.  相似文献   

18.
Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China (IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China.  相似文献   

19.
Greenhouse gas (GHG) concentrations are expected to continue to rise due to the ever-increasing use of fossil fuels and ever-boosting demand for energy. This leads to inevitable conflict between satisfying increasing energy demand and reducing GHG emissions. In this study, an integrated fuzzy-stochastic optimization model (IFOM) is developed for planning energy systems in association with GHG mitigation. Multiple uncertainties presented as probability distributions, fuzzy-intervals and their combinations are allowed to be incorporated within the framework of IFOM. The developed method is then applied to a case study of long-term planning of a regional energy system, where integer programming (IP) technique is introduced into the IFOM to facilitate dynamic analysis for capacity-expansion planning of energy-production facilities within a multistage context to satisfy increasing energy demand. Solutions related fuzzy and probability information are obtained and can be used for generating decision alternatives. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner.  相似文献   

20.
Iran's demographic profile is sharply youth oriented and this upcoming generation's needs for employment and housing, coupled with low-energy efficiency vectors and consumption patterns, has created a constant rise in energy demand and greenhouse gas (GHGs) emissions in the residential sector. Improved energy efficiency as a national policy lynchpin for demand reduction and GHGs mitigation, has become commonplace. OPEC countries however, Iran included, suffer an obvious lack of consumer incentive because of low fuel prices. This study evaluates the twin impacts of price reform and efficiency programs on energy carriers’ consumption and GHGs mitigation in the Iranian housing sector. For this purpose, the demand functions for energy carriers, has been developed by econometrics process models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号