首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe approaches for proteomics analysis using electrospray ionization-tandem mass spectrometry coupled with fast reversed-phase liquid chromatography (RPLC) separations. The RPLC separations used 50-microm-i.d. fused-silica capillaries packed with submicrometer-sized C18-bonded porous silica particles and achieved peak capacities of 130-420 for analytes from proteome tryptic digests. When these separations were combined with linear ion trap tandem mass spectrometry measurements, approximately 1000 proteins could be identified in 50 min from approximately 4000 identified tryptic peptides; approximately 550 proteins in 20 min from approximately 1800 peptides; and approximately 250 proteins in 8 min from approximately 700 peptides for a S. oneidensis tryptic digest. The dynamic range for protein identification with the fast separations was determined to be approximately 3-4 orders of magnitude of relative protein abundance on the basis of known proteins in human blood plasma analyses. We found that 55% of the MS/MS spectra acquired during the entire analysis (and up to 100% of the MS/MS spectra acquired from the most data-rich zone) provided sufficient quality for identifying peptides. The results confirm that such analyses using very fast (minutes) RPLC separations based on columns packed with microsized porous particles are primarily limited by the MS/MS analysis speed.  相似文献   

2.
We describe the preparation and performance of high-efficiency 70 cm x 20 microm i.d. silica-based monolithic capillary LC columns. The monolithic columns at a mobile-phase pressure of 5000 psi provide flow rates of approximately 40 nL/min at a linear velocity of approximately 0.24 cm/s. The columns provide a separation peak capacity of approximately 420 in conjunction with both on-line coupling with microsolid-phase extraction and nanoelectrospray ionization-mass spectrometry. Performance was evaluated using a Shewanella oneidensis tryptic digest, and approximately 15-amol detection limits for peptides were obtained using a conventional ion trap and MS/MS for peptide identification. The sensitivity and separation efficiency enabled the identification of 2367 different peptides covering 855 distinct S. oneidensis proteins from a 2.5-microg tryptic digest sample in a single 10-h analysis. The number of identified peptides and proteins approximately doubled when the effective separation time was extended from 200 to 600 min. The number of identified peptides increased from 32 to 390 as the injection amount was increased from 0.5 to 100 ng. Both the run-to-run and column-to-column reproducibility for proteomic analyses were also evaluated.  相似文献   

3.
Silica-based monolithic capillary columns (25 cm x 10 microm i.d.) with integrated nanoESI emitters have been developed to provide high-quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray operation at flow rates of approximately 10 nL/min. In an initial application with a linear ion trap MS, we identified 5510 unique peptides that covered 1443 distinct Shewanella oneidensis proteins from a 300-ng tryptic digest sample in a single 4-h LC-MS/MS analysis. The use of an integrated monolithic ESI emitter provided enhanced resistance to clogging and provided good run-to-run reproducibility.  相似文献   

4.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

5.
The throughput of proteomics measurements that provide broad protein coverage is limited by the quality and speed of both the separations as well as the subsequent mass spectrometric analysis; at present, analysis times can range anywhere from hours (high throughput) to days or longer (low throughput). We have explored the basis for proteomics analyses conducted on the order of minutes using high-speed capillary RPLC combined through on-line electrospray ionization interface with high-accuracy mass spectrometry (MS) measurements. Short 0.8-microm porous C18 particle-packed 50-microm-i.d. capillaries were used to speed the RPLC separations while still providing high-quality separations. Both time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS were applied for identifying peptides using the accurate mass and time (AMT) tag approach. Peptide RPLC relative retention (elution) times that were generated by solvent gradients that differed by at least 25-fold were found to provide relative elution times that agreed to within 5%, which provides the basis for using peptide AMT tags for higher throughput proteomics measurements. For fast MS acquisition speeds (e.g., 0.2 s for TOF and either approximately 0.3 or approximately 0.6 s for FTICR), peptide mass measurement accuracies of better than +/-15 ppm were obtained with the high-speed RPLC separations. The ability to identify peptides and the overall proteome coverage was determined by factors that include the separation peak capacity, the sensitivity of the MS (with fast scanning), and the accuracy of both the mass measurements and the relative RPLC peptide elution times. The experimental RPLC relative elution time accuracies of 5% (using high-speed capillary RPLC) and mass measurement accuracies of better than +/-15 ppm allowed for the confident identification of >2800 peptides and >760 proteins from >13,000 different putative peptides detected from a Shewanellaoneidensis tryptic digest. Initial results for both RPLC-ESI-TOF and RPLC-ESI-FTICR MS were similar, with approximately 2000 different peptides from approximately 600 different proteins identified within 2-3 min. For <120-s proteomic analysis, TOF MS analyses were more effective, while FTICR MS was more effective for the >150-s analysis due to the improved mass accuracies attained using longer spectrum acquisition times.  相似文献   

6.
For automated production of tandem mass spectrometric data for proteins and peptides >3 kDa at >50 000 resolution, a dual online-offline approach is presented here that improves upon standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategies. An integrated hardware and software infrastructure analyzes online LC-MS data and intelligently determines which targets to interrogate offline using a posteriori knowledge such as prior observation, identification, and degree of characterization. This platform represents a way to implement accurate mass inclusion and exclusion lists in the context of a proteome project, automating collection of high-resolution MS/MS data that cannot currently be acquired on a chromatographic time scale at equivalent spectral quality. For intact proteins from an acid extract of human nuclei fractionated by reversed-phase liquid chromatography (RPLC), the automated offline system generated 57 successful identifications of protein forms arising from 30 distinct genes, a substantial improvement over online LC-MS/MS using the same 12 T LTQ FT Ultra instrument. Analysis of human nuclei subjected to a shotgun Lys-C digest using the same RPLC/automated offline sampling identified 147 unique peptides containing 29 co- and post-translational modifications. Expectation values ranged from 10 (-5) to 10 (-99), allowing routine multiplexed identifications.  相似文献   

7.
Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.  相似文献   

8.
This work explores the use of 20-microm-i.d. polymeric polystyrene-divinylbenzene monolithic nanocapillary columns for the LC-ESI-MS analysis of tryptic digest peptide mixtures. In contrast to the packing of microparticles, capillary columns were prepared, without the need of high pressure, in fused-silica capillaries, by thermally induced in situ copolymerization of styrene and divinylbenzene. The polymerization conditions and mobile-phase composition were optimized for chromatographic performance leading to efficiencies over 100000 plates/m for peptide separations. High mass sensitivity (approximately 10 amol of peptides) in the MS and MS/MS modes using an ion trap MS was found, a factor of up to 20-fold improvement over 75-microm-i.d. nanocolumns. A wide linear dynamic range (approximately 4 orders of magnitude) was achieved, and good run-to-run and column-to-column reproducibility of isocratic and gradient elution separations were found. As samples, both model proteins and tissue extracts were employed. Gradient nano-LC-MS analysis of a proteolytic digest of a tissue extract, equivalent to a sample size of approximately 1000 cells injected, is presented.  相似文献   

9.
Chen Y  Kim SC  Zhao Y 《Analytical chemistry》2005,77(24):8179-8184
The high sensitivity and accuracy of mass spectrometry for identifying proteins has led to an explosive expansion of proteomics research, necessitating rapid procedures for HPLC/MS/MS analysis. Current HPLC/MS/MS analysis usually relies on elution of peptides from the HPLC column with a gradient that takes a total of 45-70 min for each cycle, limiting sample throughput and the speed of protein identification. Here we report a simple method for high-throughput protein identification, using isocratic, either methanol- or acetonitrile-based buffer systems, HPLC elution into an LTQ mass spectrometer. This procedure allows each cycle of highly sensitive HPLC/MS/MS analysis to be completed in 5 min, thus boosting the efficiency of HPLC/MS/MS analysis 9-14-fold. Using this method, each operator can acquire HPLC/MS/MS data for 96 in-gel proteolytic digests in one 8-h working day. The method can easily be implemented in any laboratory with an LTQ mass spectrometer. This protocol should find wide application in mass spectrometry laboratories that require high-throughput analysis but are limited by inefficient use of machine time.  相似文献   

10.
High-efficiency nanoscale reversed-phase liquid chromatography (chromatographic peak capacities of approximately 1000: Shen, Y.; Zhao, R.; Berger, S. J.; Anderson, G. A.; Rodriguez, N.; Smith, R. D. Anal. Chem. 2002, 74, 4235. Shen, Y.; Moore, R. J.; Zhao, R.; Blonder, J.; Auberry, D. L.; Masselon, C.; Pasa-Tolic, L.; Hixson, K. K.; Auberry, K. J.; Smith, R. D. Anal. Chem. 2003, 75, 3596.) and strong cation exchange LC was used to obtain ultra-high-efficiency separations (combined chromatographic peak capacities of >10(4)) in conjunction with tandem mass spectrometry (MS/MS) for characterization of the human plasma proteome. Using conservative SEQUEST peptide identification criteria (i.e., without considering chymotryptic or elastic peptides) and peptide LC normalized elution time constraints, the separation quality enabled the identification of proteins over a dynamic range of greater than 8 orders of magnitude in relative abundance using ion trap MS/MS instrumentation. Between 800 and 1682 human proteins were identified, depending on the criteria used for identification, from a total of 365 microg of human plasma. The analyses identified relatively low-level (approximately pg/mL) proteins (e.g., cytokines) coexisting with high-abundance proteins (e.g., mg/mL-level serum albumin).  相似文献   

11.
Time-of-flight mass spectrometry (TOF MS) is increasingly used in proteomics research. Herein, we report on the development and characterization of a TOF MS instrument with improved sensitivity equipped with an electrodynamic ion funnel trap (IFT) that employs an automated gain control (AGC) capability. The IFT-TOF MS was coupled to a reversed-phase capillary liquid chromatography (RPLC) separation and evaluated in experiments with complex proteolytic digests. When applied to a global tryptic digest of Shewanella oneidensis proteins, an order-of-magnitude increase in sensitivity compared to that of the conventional continuous mode of operation was achieved due to efficient ion accumulation prior to TOF MS analysis. As a result of this sensitivity improvement and related improvement in mass measurement accuracy, the number of unique peptides identified in the AGC-IFT mode was 5-fold greater than that obtained in the continuous mode.  相似文献   

12.
In proteomics, effective methods are needed for identifying the relatively limited subset of proteins displaying significant changes in abundance between two samples. One way to accomplish this task is to target for identification by MS/MS only the "interesting" proteins based on the abundance ratio of isotopically labeled pairs of peptides. We have developed the software and hardware tools for online LC-FTICR MS/MS studies in which a set of initially unidentified peptides from a proteome analysis can be selected for identification based on their distinctive changes in abundance following a "perturbation". We report here the validation of this method using a mixture of standard proteins combined in different ratios after isotopic labeling. We also demonstrate the application of this method to the identification of Shewanella oneidensis peptides/proteins exhibiting differential abundance in suboxic versus aerobic cell cultures.  相似文献   

13.
Garza S  Moini M 《Analytical chemistry》2006,78(20):7309-7316
Identification of proteins, in a complex protein mixture, using one-dimensional high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis of its digest, usually suffers from low sequence coverage. There are several reasons for the low coverage including undersampling, wide concentration dynamic range of the proteins in a complex protein mixture, and wide range of electrospray ionization efficiency of peptides under each mobile-phase composition. To address this low sequence coverage, we introduce a novel technique, (CE-MS/MS)n, which utilizes the most significant advantages of CE-MS/MS, including economy of sample size, fast analysis time, and high separation efficiency, to increase the sequence coverage of a complex protein mixture. Based on these characteristics, (CE-MS/MS)n can be performed in which multiple CE-MS/MS subanalyses (injections followed by analyses) are analyzed and experimental variables are manipulated during each CE-MS/MS subanalysis in order to maximize sequence coverage. (CE-MS/MS)n is a practical technique since each CE-MS/MS subanalysis consumes <10 nL, and each CE-MS/MS subanalysis takes approximately 10 min; therefore, several subanalyses can be performed in approximately 1 h consuming only nanoliters of the sample. Two techniques have been introduced to address the undersampling: (1) (CE-MS/MS)n using dynamic exclusion. In this technique, several CE-MS/MS analyses (injection followed by separation) were performed in one run using the dynamic exclusion capability of the mass spectrometer until all peptide peaks were analyzed by MS/MS. (2) Gas-phase fractionation. In this technique, (CE-MS/MS)n is performed by scanning a narrow mass range (every approximately 100 m/z) during each CE-MS/MS subanalysis without using dynamic exclusion. Under this condition, in each subanalysis, the number of peptides available for MS/MS analysis is significantly reduced, and peptides with the same nominal masses are analyzed, thereby increasing sequence coverage. Additionally, to address the lack of detection of low-level peptides in a mixture containing a wide concentration dynamic range, the concentration of the sample was systematically increased in each subanalysis (while utilizing dynamic exclusion) so that low-intensity peptides would rise above the mass spectrometer threshold and, consequently, undergo MS/MS analysis. Moreover, to alter the ionization efficiency of peptides with low electrospray ionization efficiency, and to change the migration behavior of comigrating peptides under a specific liquid composition, the CE background electrolyte was modified in several subanalyses to further improve sequence coverage. The combination of the above-mentioned techniques was applied to the analysis of the tryptic digests of three well-characterized protein mixtures: a six-protein mixture with average MW of approximately 26,000 (standard I), a six-protein mixture with an average MW approximately 49,000 (standard II), and a more complex protein mixture containing 55 proteins (E. coli ribosomal proteins). In approximately 1 h, when the MS/MS of the peptides were manually checked, all peptides that produced peaks under electrospray ionization in the scanned range of the analysis (500-2000 m/z) and within the practical fragmentation capability of the MS (peptides with MW <3500) were identified for standard I by consuming only 200 fmol of each protein. When searched against a Swissprot database, the average sequence coverage for the standard I, II, and E. coli's ribosomal proteins were 57, 34, and 15%, respectively.  相似文献   

14.
In this paper, the preparation and performance of long, high-efficiency poly(styrene-divinylbenzene) (PS-DVB), 10-microm-i.d. porous layer open tubular (PLOT) capillary columns are described. PLOT capillaries ( approximately 3% RSD column-to-column retention time), with relatively high permeability, were prepared by in-situ polymerization. Relatively high loading capacities, approximately 100 fmol for angiotensin I and approximately 50 fmol for insulin, were obtained with a 4.2 m x 10-microm-i.d. PLOT column. Low detection levels (attomole to sub-attomole) were achieved when the column was coupled on-line with a linear ion trap MS (LTQ). Analysis of human epidermal growth factor receptor (EGFR), a large transmembrane tyrosine kinase receptor with heterogeneous phosphorylation and glycosylation structures, was obtained at the 25 fmol level. The PLOT column yielded a peak capacity of approximately 400 for the separation of a complex tryptic digest mixture when the sample preparation included a 50-microm-i.d. PS-DVB monolithic precolumn and ESI-MS detection. As an example of the power of the column, 3046 unique peptides covering 566 distinct Methanosarcina acetivorans proteins were identified from a 50 ng in-gel tryptic digest sample combining five cuts in a single LC/MS/MS analysis using the LTQ. The results demonstrate the potential of the PLOT column for high-resolution LC/MS at the ultratrace level.  相似文献   

15.
For analysis of intact proteins by mass spectrometry (MS), a new twist to a two-dimensional approach to proteome fractionation employs an acid-labile detergent instead of sodium dodecyl sulfate during continuous-elution gel electrophoresis. Use of this acid-labile surfactant (ALS) facilitates subsequent reversed-phase liquid chromatography (RPLC) for a net two-dimensional fractionation illustrated by transforming thousands of intact proteins from Saccharomyces cerevisiae to mixtures of 5-20 components (all within approximately 5 kDa of one another) for presentation via electrospray ionization (ESI) to a Fourier transform MS (FTMS). Between 3 and 13 proteins have been detected directly using ESI-FTMS (or MALDI-TOF), and the fractionation showed a peak capacity of approximately 400 between 0 and 70 kDa. A probability-based identification was made automatically from raw MS/MS data (obtained using a quadrupole-FTMS hybrid instrument) for one protein that differed from that predicted in a yeast database of approximately 19,000 protein forms. This ALS-PAGE/RPLC approach to proteome processing ameliorates the "front end" problem that accompanies direct analysis of whole proteins and assists the future realization of protein identification with 100% sequence coverage in a high-throughput format.  相似文献   

16.
We have developed an information-dependent, iterative MS/MS acquisition (IMMA) tool for improving MS/MS efficiency, increasing proteome coverage, and shortening analysis time for high-throughput proteomics applications based on the LC-MALDI MS/MS platform. The underlying principle of IMMA is to limit MS/MS analyses to a subset of molecular ions that are likely to identify a maximum number of proteins. IMMA reduces redundancy of MS/MS analyses by excluding from the precursor ion peak lists proteotypic peptides derived from the already identified proteins and uses a retention time prediction algorithm to limit the degree of false exclusions. It also increases the utilization rate of MS/MS spectra by removing "low value" unidentifiable targets like nonpeptides and peptides carrying large loads of modifications, which are flagged by their "nonpeptide" excess-to-nominal mass ratios. For some samples, IMMA increases the number of identified proteins by ~20-40% when compared to the data dependent methods. IMMA terminates an MS/MS run at the operator-defined point when "costs" (e.g., time of analysis) start to overrun "benefits" (e.g., number of identified proteins), without prior knowledge of sample contents and complexity. To facilitate analysis of closely related samples, IMMA's inclusion list functionality is currently under development.  相似文献   

17.
The use of artificial neural networks (ANNs) is described for predicting the reversed-phase liquid chromatography retention times of peptides enzymatically digested from proteome-wide proteins. To enable the accurate comparison of the numerous LC/MS data sets, a genetic algorithm was developed to normalize the peptide retention data into a range (from 0 to 1), improving the peptide elution time reproducibility to approximately 1%. The network developed in this study was based on amino acid residue composition and consists of 20 input nodes, 2 hidden nodes, and 1 output node. A data set of approximately 7000 confidently identified peptides from the microorganism Deinococcus radiodurans was used for the training of the ANN. The ANN was then used to predict the elution times for another set of 5200 peptides tentatively identified by MS/MS from a different microorganism (Shewanella oneidensis). The model was found to predict the elution times of peptides with up to 54 amino acid residues (the longest peptide identified after tryptic digestion of S. oneidensis) with an average accuracy of approximately 3%. This predictive capability was then used to distinguish with high confidence isobar peptides otherwise indistinguishable by accurate mass measurements as well as to uncover peptide misidentifications. Thus, integration of ANN peptide elution time prediction in the proteomic research will increase both the number of protein identifications and their confidence.  相似文献   

18.
Batt AL  Aga DS 《Analytical chemistry》2005,77(9):2940-2947
Solid-phase extraction (SPE) and liquid chromatography in combination with ion trap mass spectrometry (LC/MS/MS) conditions were optimized for the simultaneous analysis of 13 antibiotics belonging to multiple classes and caffeine in 3 different water matrixes. The single-cartridge extraction step was developed using a reversed-phase cartridge, resulting in recoveries for the 14 compounds ranging from 71 to 119% with relative standard deviations of 16% or lower. The analytes were separated in one chromatographic run, and the SPE-LC/MS/MS detection limits ranged from 0.03 to 0.19 microg/L. The SPE procedure was validated in groundwater, surface water, and wastewater. The analysis of samples from each of the three water matrixes revealed clindamycin (1.1 microg/L) in surface water and multiple antibiotics in wastewater (0.10-1.3 microg/L). The use of identification points to unambiguously assign the identity of antibiotics in various water matrixes was applied to an ion trap data-dependent scanning method, which simultaneously collects full scan and full scan MS/MS data for the unequivocal identification of target analytes.  相似文献   

19.
Currently, unbiased protein identification is mostly performed by directly coupling reversed-phase liquid chromatography (RPLC) via electrospray ionization to a mass spectrometer. In contrast to the innovations in mass spectrometric instrumentation, cutting-edge technology in RPLC has generally not been well adopted. Here, we describe the effects of increased peak capacities on the number of identified proteins and peptides in complex mixtures utilizing collision-induced dissociation on an LTQ-Orbitrap Velos, providing a rationale for using advanced RPLC technology in LC-MS/MS. Using two different column lengths and gradient times between 1 and 10 h, we found a linear relation between the obtained peak capacities and the number of identified peptides. We identified on average 2516 proteins in the tryptic digest of 1 μg of HeLa lysate using an 8 h gradient on a 50 cm column packed with 2 μm C18 reversed-phase chromatographic material.  相似文献   

20.
This study describes a methodology for performing relative quantitation in large-scale proteomic sample comparisons using an LC-MALDI mass spectrometry analytical platform without the use of isotope tagging reagents. The method utilizes replicate analyses of a sample to create a profile of constituent components that are aligned based on LC elution time and mass. Once components from individual runs have been grouped as common "features", the Student's t test is used to determine which components are systematically different between samples. In this study, five HPLC runs of human plasma were compared to five HPLC runs of human serum. About 3889 components were detected in all 10 runs. Of these, 1831 corresponded to approximately 100 known serum proteins, based on MS/MS analysis of one run each from serum and plasma. As expected, fibrinogen alpha, beta, and gamma chains accounted for many of the most significant differences. Therefore, using MALDI, samples containing thousands of peptides can be compared in a minimal amount of time. Moreover, the results of the comparison can be used to guide further MS/MS mode sample interrogation in a result dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号