首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The physical and mechanical properties of Portland cement (PC) containing metakaolin (MK) or combination of MK and slag and the compatibility between such materials and superplasticizers were investigated in present study. After MK was incorporated into PC, the compressive strength of the blended cement was enhanced. However, the fluidity of MK blended cement became poorer than that of PC at the same dosage of superplasticizer and the same water/binder ratio. When both MK (10%) and ultra-fine slag (20% or 30%) were incorporated into PC together, not only the compressive strength of the blended cement was increased, but also the fluidity of the blended cement paste was improved comparing to MK blended cement. This indicates that ultra-fine slag can improve the physical and mechanical properties of MK blended cement. The physical and chemical effects of two mineral admixtures were also discussed.  相似文献   

3.
Three kaolins were heated between 500 and 850 °C. The samples were tested by X-ray diffraction (XRD), differential thermal analysis (DTA), and Infra-Red (IR) spectroscopy in order to determine their mineralogical composition and degrees of crystallinity and dehydroxylation. The reactivity of the heated samples was evaluated by the determination of the residual quantity of Ca(OH)2 by differential thermal analysis (DTA) performed on hydrated mixtures of 50% metakaolin and 50% Ca(OH)2. There was no direct relationship between the pozzolanic activity of metakaolin and the degree of dehydroxylation. Highest activity was obtained when the degree of dehydroxylation was > 95%.  相似文献   

4.
The microstructure and composition of water- and alkali-activated hardened pastes of white Portland cement-20% metakaolin blends have been studied using solid-state NMR spectroscopy and analytical TEM. The results show that after hydration for 1 day nearly half the cement had reacted in the water-activated paste but very little, if any, of the metakaolin; by 28 days two-thirds of the cement had reacted and most of the metakaolin. In contrast, whilst alkali-activation again led to about half the cement reacting by 1 day, about a quarter of the metakaolin had also reacted; and whilst most of the metakaolin had again reacted by 28 days, there had been no further reaction of the cement. The high degree of reaction of the MK in both pastes at 28 days resulted in long-chain highly aluminous C-S-H, with most of the bridging sites occupied by Al3+ rather than Si4+. The data for the C-S-H in the water-activated paste are consistent with both the tobermorite/jennite (T/J) and tobermorite/calcium hydroxide (T/CH) models for the nanostructure of C-S-H - although very little J- or CH-like structure is needed to account for the observed compositions - whilst those for the alkali-activated paste can only be accounted for on the T/CH viewpoint.  相似文献   

5.
Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO2-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO2/Na2O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na+ present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na+ for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.  相似文献   

6.
In this paper, the effect of metakaolin on concrete properties is investigated. A poor Greek kaolin was thermally treated at defined conditions, and the produced metakaolin was superfine ground. In addition, a commercial metakaolin of high purity was used. Eight mixture proportions were used to produce high-performance concrete, where metakaolin replaced either cement or sand in percentages of 10% or 20% by weight of the control cement content. The strength development of metakaolin concrete was evaluated using the efficiency factor (k-value). The produced metakaolin as well as the commercial one imparts a similar behavior with respect to the concrete strength. Both metakaolins exhibit very high k-values (close to 3.0 at 28 days) and are characterised as highly reactive pozzolanic materials that can lead to concrete production with an excellent performance.  相似文献   

7.
《Ceramics International》2020,46(4):4581-4586
Porous ceramics with high porosity and low bulk density were prepared by using nickel slag and metakaolin as the primary raw materials, glass powder as flux, and SiC as the foaming agent. The content of nickel slag and foaming agent had a significant effect on the bulk density, porosity, and flexural strength of the porous ceramics. The porous ceramics with the best properties were obtained at 1100 °C for 30 min with 50 wt% nickel slag, 40 wt% metakaolin, 10 wt% waste glass, and 0.8 wt% SiC. It had a low bulk density (as low as 245 kg/m3), high flexural strength and compressive strength (0.6 MPa and 1.17 MPa, respectively), and high porosity (about 89.8%). The nickel slag was magnetically separated as well. The density of nickel slag powder could be reduced via magnetic separation, and there was no significant change in the crystal structure of the raw material. Compared with porous ceramics prepared using nickel slag without magnetic separation, ceramics subjected to magnetic separation had lower bulk density, higher porosity, and the same phase composition. This study can be used as an indicator for the application of nickel slag in porous ceramics, which is of great significance in providing a great substitute nickel slag towards recovery and utilization.  相似文献   

8.
Influence of metakaolin on the properties of mortar and concrete: A review   总被引:1,自引:0,他引:1  
Supplementary cementing materials (SCM) have become an integral part of high strength and high performance concrete mix design. These may be naturally occurring materials, industrial wastes, or byproducts or the ones requiring less energy to manufacture. Some of the commonly used supplementary cementing materials are fly ash, silica fume (SF), granulated blast furnace slag (GGBS), rice husk ash (RHA) and metakaolin (MK), etc. Metakaolin is obtained by the calcination of kaolinite. It is being used very commonly as pozzolanic material in mortar and concrete, and has exhibited considerable influence in enhancing the mechanical and durability properties of mortar and concrete. This paper presents an overview of the work carried out on the use of MK as partial replacement of cement in mortar and concrete. Properties reported in this paper are the fresh mortar/concrete properties, mechanical and durability properties.  相似文献   

9.
The thermal behavior along with certain characteristics of geopolymers produced from local Cameroonian metakaolin and heated up to 1000 °C were examined. Geopolymers fired up to 900 °C had the same physical aspect as initial ones and those fired at 1000 °C warped, were glazed and blistered. The TG showed elimination of water according to two stages. The dilatometric curves of preheated samples showed shrinkage between 90 and 250 °C followed by expansion and sintering. The samples heated up to 700 °C were amorphous and new crystalline phases appeared around 900 °C. The microstructure of geopolymers heated between 300 and 900 °C showed progressive disruption and the linear shrinkage increased. The water absorption of the samples fired up to 700 °C increased slightly and tremendously around 900 °C. A drastic decrease of compressive strength was observed with the samples fired between 300 and 900 °C. Hence, the characteristics of geopolymers lessened with elimination of the water which forms hydration spheres around the compensating cations (Na+) opposed to tetrahedral groups AlO4 along with transformation of amorphous phase.  相似文献   

10.
邓少霞  薛群虎 《耐火材料》2007,41(6):424-426
以8~5mm、5~3mm、≤3mm的矾土为骨料,保持颗粒与细粉质量比为65:35不变,研究了用d50=15.91μm,加入量(w)为4%、6%、8%的偏高岭土超细粉,分别取代d50=1.75μm,加入量(w)为1%、2%、3%的Al2O3微粉后,中间包永久衬用高铝质浇注料施工性能、机械强度以及矿物组成的变化。结果认为:用偏高岭土超细粉完全可以取代Al2O3微粉生产莫来石质中间包永久衬用浇注料,添加偏高岭土超细粉的浇注料的流动性、粘聚性、保水性等明显优于加入Al2O3微粉的,且经1400℃煅烧后的机械强度较高;XRD分析表明,以8%偏高岭土超细粉完全取代Al2O3微粉后,试样于1400℃3h烧后的莫来石相含量最高,且其各项性能指标与中间包永久衬要求相一致。  相似文献   

11.
This work reports a solid-state synthesis of low-charge mica-type clay minerals using a fluoride flux method. Synthesized mica-type clay samples yielded hydrated phases with d-spacings in the range of 12.1–12.5 Å as revealed by powder X-ray diffraction (XRD). 29Si and 27Al magic angle spinning nuclear magnetic resonance (MASNMR) spectroscopy revealed the Si and Al nearest neighbor environments as well as the presence of impurities such as amorphous silica and forsterite in these samples.  相似文献   

12.
The impact of the incorporation of a non‐natural amino acid (NNAA) on protein structure, dynamics, and ligand binding has not been studied rigorously so far. NNAAs are regularly used to modify proteins post‐translationally in vivo and in vitro through click chemistry. Herein, structural characterisation of the impact of the incorporation of azidohomoalanine (AZH) into the model protein domain PDZ3 is examined by means of NMR spectroscopy and X‐ray crystallography. The structure and dynamics of the apo state of AZH‐modified PDZ3 remain mostly unperturbed. Furthermore, the binding of two PDZ3 binding peptides are unchanged upon incorporation of AZH. The interface of the AZH‐modified PDZ3 and an azulene‐linked peptide for vibrational energy transfer studies has been mapped by means of chemical shift perturbations and NOEs between the unlabelled azulene‐linked peptide and the isotopically labelled protein. Co‐crystallisation and soaking failed for the peptide‐bound holo complex. NMR spectroscopy, however, allowed determination of the protein–ligand interface. Although the incorporation of AZH was minimally invasive for PDZ3, structural analysis of NNAA‐modified proteins through the methodology presented herein should be performed to ensure structural integrity of the studied target.  相似文献   

13.
14.
SnO2 nanomaterials and SnO2/Li2SnO3 composite nanomaterials doped with different Li contents were synthesized via a simple one-step thermal evaporation method. X-ray diffraction patterns showed that with the increase of Li doping, the intensity of Li2SnO3 diffraction peaks gradually increased, while that of SnO2 diffraction peaks gradually decreased. With the increase of Li doping, the width of nanobelts gradually increased, with the morphology changing from banded structure to standard hexagonal sheet structure. The Raman scattering spectra indicated that with the increase of Li doping, the peak of Li2SnO3 at 588.8 cm?1 kept increasing, and the strongest vibration mode A1g in SnO2 gradually weakened. X-ray photoelectron spectroscopy revealed that with the increase of Li doping, the surface electrophilic oxygen species in SnO2/Li2SnO3 composite nanomaterials greatly increased. Under the condition of light irradiation with a wavelength of 505 nm, the bright current of the Li-doped SnO2 samples was higher than the dark current, while that of the SnO2/Li2SnO3 composite nanomaterials was higher than the dark current, which was mainly due to more oxygen vacancies in SnO2/Li2SnO3 composite nanomaterials than electrons excited by light. Consequently, positive photoconductivity gradually weakened, and even the negative photoconductivity emerged.  相似文献   

15.
The composition of the corrosion products of pure Zn galvanic coatings as well as of some zinc alloys (Zn-Mn and Zn-Co) after treatment in selected free aerated model media (5% NaCl and 1N Na2SO4) is studied and discussed. X-ray diffraction and X-ray photoelectron spectroscopy investigations are used for this purpose. It is concluded that the corrosion products (zinc hydroxide chloride hydrate in 5% NaCl and zinc hydroxide sulfates hydrates in 1N Na2SO4) play a very important role for the improved protective ability of the zinc alloys toward the iron substrate, compared to the pure Zn coatings. Another result is that, for a given medium, the corrosion products are one and the same for both alloys independently of the fact that the alloying component is electrically more positive or negative than the zinc. Some suggestions about the models of the appearance of these products and their protective influence are also discussed.  相似文献   

16.
In this work, mesoporous geopolymer was synthesized using a novel and easy synthesis route employing metakaolin and rice husk ash as sources of silica and alumina, and soybean oil as a mesostructure-directing agent. For comparison purposes, a geopolymer sample was produced without the use of oil. The samples were characterized by Fourier transform infrared spectroscopy (FT–IR), X–ray diffraction (XRD), specific surface area, pore volume, average pore size, and pore size distribution (BET and BJH methods). The materials were tested to remove methyl violet 10B dye from aqueous solutions. The results showed that the mesoporous geopolymer presented adsorptive superior behavior compared to the geopolymer prepared without the use of oil, being attributed to its superior pore properties. The adsorption equilibrium was attained within 120 min, and the maximum adsorption capacity of mesoporous geopolymer was 276.9 mg g–1. Therefore, the mesoporous geopolymer prepared in this work comprises a potential adsorbent, presenting pore intrinsic properties that result in a high adsorption capacity.  相似文献   

17.
Dolomite powder from Ouled Mimoun, Tlemcen (western region of Algeria) was thermally treated within the temperature range 450-1000 °C. The modifications undergone by dolomite, inherent to thermal treatment, were investigated from X-ray diffraction patterns. The results were also discussed using scanning electronic microscopy and nitrogen adsorption. The XRD data, analysed from X Pert Plus program, showed that the dolomite phase ceases at 700 °C and is relayed by the formation of in situ calcite and periclase. The crystallographic parameters of these two phases tend towards that of pure periclase and calcite at 1000 and 900 °C, respectively. SEM analysis indicated that the morphological properties were profoundly affected. SEM images of D-1000 (sample treated at 1000 °C) indicated that the original particle shape of dolomite (presence of discrete grains having sharp edges with presence of cleavages) was totally destroyed, leading to small spherical particles with a diameter of 0.1 μm. The specific surface area value of D-1000 increased more than 6 times against that of the raw dolomite. Adsorption of azo-dye Orange I from aqueous solutions onto untreated and treated dolomites was also reported. The isotherms were of L-type. The interaction was explained by electrostatic considerations between sulfonate groups of the dye (D-SO3Na), which are dissociated in the aqueous system, and positively charged adsorption sites. The affinity of orange I for the dolomitic solids follows the sequence D-900 > D-1000 > D-800 > > D-600 > raw dolomite. The maximum retention capacity shown by D-900 was explained and correlated with its crystallographic properties.  相似文献   

18.
Soapstone is an abundant mineral in Ouro Preto - Minas Gerais, Brazil and its main destination is in the production of craftsmanship. Rock recovery in those activities is low and the waste disposal is done with little control, which can be hazardous to the environment. This work proposes an alternative use of such potentially harmful waste as reinforcement in a novel polymer matrix composite, which can be particularly attractive to the automotive industry and of which very little information is available elsewhere in the literature. Firstly, the characterization of the waste was performed. Particle size and shape parameters were determined by automated image analysis and the mineralogical composition was determined by X-ray diffraction, infrared, and Raman spectroscopy. High-density polyethylene was used as matrix and the composites were made in three matrix/filler ratios: 90/10, 80/20, and 70/30 by weight. Tensile and rheological properties were measured in order to determine the influence of the particles on the polymer mechanical behavior and processing conditions. The materials showed a pseudoplastic behavior and the filler's influence was more pronounced in the 70/30 composites, which showed higher viscosities than the neat polymer. The addition of particles resulted in more brittle and rigid composites, with higher values of tensile strength.  相似文献   

19.
Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly.  相似文献   

20.
A natural specimen of tobermorite, which contained both 1.1 and 1.4 nm phases, was studied by optical microscopy, X-ray powder diffractometry (XRD), EPMA, analytical TEM, 29Si NMR and TG-DTA, and the results were compared with those for a specimen from Crestmore, California. The sample, occurring as a vein in contact with metamorphic rocks, could be divided into three zones. In two of the zones containing only the 1.1 nm phase, about 10% of the Si were substituted by Al. The third zone was an intergrowth of 1.1 and 1.4 nm tobermorites and contained almost no Al. The basal spacings of the 1.1 and 1.4 nm tobermorites were changed mainly to 0.9 nm by heating at 300 °C for 24 h but in some parts remained at 1.1 nm. 29Si NMR results showed that silicate anions in the 1.1 nm tobermorite were double chains, which changed mainly into single chains, on heating at 300 °C. XRD results indicated that natural tobermorites are more highly crystalline than the synthetic ones of calcium silicate products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号