首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial lead zirconate titanate (PZT) perovskite powders were used to fabricate ceramic tape and then sintered by microwave and conventional methods. Both dielectric and piezoelectric properties of PZT ceramic tapes were studied in terms of sintering process. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) show the PZT perovskite phase with smaller grain size and dense microstructure can be obtained at a lower sintering temperature by microwave process. It was also observed that shrinkage ratio and bulk density of the tapes sintered at 800 °C were obtained about 19% and 7.46 g/cm3 by the microwave heating method, respectively, that is corresponding to those values of sintered PZT tapes at 950 °C by conventional process. Moreover, the dielectric constant and maximum permittivity are increased about 30% as compared with conventional processing method. The experimental results demonstrated that the characteristics of the PZT tapes could be significantly improved by microwave heating method. These results demonstrate that such a simple approach can upswing the piezoelectric and dielectric properties of these tapes by using microwave process with a short heating time.  相似文献   

2.
Porous lead zirconate titanate (PZT) ceramics could be produced by combining the particle-stabilized foams and the gelcasting technique. In this study, the foaming capacity of particle-stabilized wet foams was tailored by changing the concentration of valeric acid and pH values of suspension. Accordingly, porous PZT ceramics with different porosity, microstructure, dielectric and piezoelectric properties were prepared with the respective wet foam. Increase in the porosity led to a reduction in the relative permittivity (εr), a moderate decline in the longitudinal piezoelectric strain coefficient (d33) and a rapid decline in the transverse piezoelectric strain coefficient (d31), which endowed porous PZT ceramics with a high value of hydrostatic strain coefficient (dh) and hydrostatic figure of merit (HFOM). As a result, the prepared samples possessed a maximal HFOM value of 19,520×10?15 Pa?1 with the porosity of 76.3%. The acoustic impedance (Z) of specimens had the lowest value of 1.35 Mrayl, which could match well with those of water or biological tissue; accordingly, the material would be beneficial in underwater sonar detectors or medical ultrasonic imaging.  相似文献   

3.
Eu-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6-xEu, x=0.00–2.00 at%) lead-free piezoelectric ceramics have been synthesized by the solution combustion method. The effect of Eu doping concentration on the phase structure, microstructure and electrical properties of BNBT6 ceramics has been investigated. The XRD analysis confirms that the europium additive incorporates into the BNBT6 lattice and results in a phase transition from the coexistence of rhombohedral and tetragonal phases to a more symmetric pseudocubic phase. The SEM images indicate that the europium additive has little effect on the ceramic microstructure and the average grain size is about 2.0 μm. The electrical properties of BNBT6 ceramics can be improved by appropriate Eu doping. The 0.25 at% Eu doped BNBT6 ceramic presents excellent electrical properties: piezoelectric constant d33=149 pC/N, remnant polarization Pr=40.27 μC/cm2, coercive field Ec=2.95 kV/mm, dielectric constant εr=1658 and dissipation factor tan δ=0.0557 (10 kHz).  相似文献   

4.
5.
《Ceramics International》2022,48(16):23241-23248
In this work, a two-step solid-state reaction method is used to prepare the 0.55 Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3/xSnO2 (PNN-PZT/xSnO2) ceramics. The influences of SnO2 on the crystalline structure, electromechanical properties, and temperature stability of PNN-PZT ceramics were studied in detail. The results demonstrate that the Sn4+ ions are successfully introduced into the PNN-PZT crystalline lattice and substitute B-site Ni2+ and Zr4+. The x = 0.0025 ceramic with the coexistence of rhombohedral, tetragonal, and pseudocubic phases exhibits the optimized comprehensive properties: the quasi-static piezoelectric constant d33, large-signal d33*, electromechanical coupling coefficients kp and kt, free dielectric constant εr, and mechanical quality factor Qm are 1123 pC/N, 1250 p.m./V, 0.63, 0.54, 9529, and 57, respectively. Meanwhile, the Curie temperature for this composition is 103 °C, almost maintaining the same level as the PNN-PZT matrix. After annealing at 75 °C, the retained d33 of x = 0.0025 ceramic is as high as 975 pC/N, superior to the PNN-PZT matrix (retained d33 ≈ 873 pC/N). Our results provide a promising piezoelectric material for board bandwidth, high sensitivity, and miniaturized medical ultrasonic transducers applications.  相似文献   

6.
7.
The bismuth layer-structured Na0.5Bi4.5-xPrxTi4O15 (x?=?0, 0.1, 0.2, 0.3, 0.4, and 0.5) (NBT-xPr3+) ceramics were fabricated using the traditional solid reaction process. The effect of different Pr3+ contents on dielectric, ferroelectric and piezoelectric properties of Na0.5Bi4.5Ti4O15 ceramics were investigated. The grain size of Pr3+-doping ceramics was found to be smaller than that of pure one, the maximum dielectric constant and Curie temperature Tc gradually decreased with increasing Pr3+ contents, and the dielectric loss decreased at high temperature by Pr3+-doping. Moreover, the activation energy (Ea), resistivity (Z’), remanent polarization (2Pr) and piezoelectric constant (d33) increased by Pr3+-doping. The NBT-xPr3+ ceramics with x?=?0.3 achieved the optimal properties with the maximum dielectric constant of 1109.18, minimum loss of 0.00822 (250?kHz), Ea of 1.122?eV, Z’ of 7.9?kΩ?cm (725 ºC), d33 of 18 pC/N, 2Pr of 12.04 μC/cm2. The enhancement was due to the addition of Pr3+ which suppressed the decreasing of resistivity at high temperature and made it possible for NBT-xPr3+ ceramics to be poled in perpendicular direction, implying that it is a great improvement for Na0.5Bi4.5Ti4O15 ceramics in electrical properties.  相似文献   

8.
《Ceramics International》2021,47(23):32514-32520
Ion irradiation effects on piezoceramic (Pb0.94 Sr0.04) (Zr0.52 Ti0.48)O3 (PSZT) are investigated by using 4 MeV carbon (C), 9 MeV copper (Cu), and 20 MeV gold (Au) ions. The energies of incident ions are selected in order to target the same range of all incident ions in the material, while producing different amounts of vacancies. The ion irradiation is performed with fluences of 1×1013, 1×1014, and 1×1015 ions/cm2 using Tandem Pelletron accelerator (5UDH-2). Post irradiation changes in PSZT are investigated via various structural, dielectric, and piezoelectric measurement techniques. Results divulge that the irradiation process disturbs the crystallinity along with reduction in X-ray diffraction (XRD) peak intensities owing to strain induced structural defects. A small decrease in dielectric constant is observed due to trapped charges, which screen the depolarization after irradiation. However, a significant decrease is detected in piezoelectric charge coefficients (d33) and piezoelectric voltage coefficients (g33) due to switching of micro domains of PSZT as a result of energy observed during irradiation process. These results indicate that ion irradiation has damaging effects on the properties of PSZT. The discussed information may be utilized to assess performance of PSZT based devices under radiation rich environments such as space.  相似文献   

9.
《Ceramics International》2019,45(12):14768-14774
Ceramics of seven quasi-binary concentration sections of the ternary solid solution system (1-x-y)BiFeO3-xPbFe0.5Nb0.5O3-yPbTiO3 were prepared by the conventional solid-phase reaction method in the range of 0.05 ≤ x ≤ 0.325; 0.05 ≤ y ≤ 0.325. By using x-ray diffraction technique, the phase diagram of the system was constructed which was shown to contain the regions of tetragonal and rhombohedral symmetry and the morphotropic phase boundary between them. Grain morphology, dielectric and piezoelectric properties of selected solid solutions were investigated. The highest piezoelectric coefficient d33 = 50 pC/N was obtained. Dielectric characteristics of ceramics revealed ferroelectric relaxor behavior and region of diffuse phase transition from the paraelectric to ferroelectric phase in the temperature range of 600–800 K.  相似文献   

10.
Ferroelectric and piezoelectric properties of BaTiO3 and Al-doped BaTiO3 ceramics were investigated. The ferroelectric study demonstrated that, by doping Al3+ ions in the A-site of BaTiO3, the polarization–electric field loop exhibited enhanced remnant polarization (from 12 to 17.5  μC/cm2), saturation and switching. In addition, the piezoelectric constant (d33) increased with Al-doping for both static and dynamic strain values (from 75 to 135 and from 29.2 to 57.9 pC/N, respectively, at a maximum applied electric field of 16 kV/cm). Furthermore, the dielectric constant values increased and both the dielectric loss factor and leakage current decreased, even though the transition temperature shifted to lower temperature (from 121 to 113 °C) for the Al-doped sample. Therefore, the Al-doped BaTiO3 has adjustable piezoelectric and ferroelectric properties.  相似文献   

11.
Thick PZT films have been produced using a combination of spin coating of a composite slurry and subsequent infiltration of PZT producing sol. The effect of adding a Cu2O–PbO sintering aid and repeated sol infiltrations have been studied with the aim of producing dense PZT films. Relative permittivity has been shown to increase with the addition of sintering aid and increased levels of sol infiltration. Measurements of piezoelectric properties indicate that sol infiltrations have no effect on d33 once a critical density has been exceeded. A sample with approximately 10% closed porosity was obtained following the incorporation of sintering aid and four infiltration steps per layer. This resulted in a mean relative permittivity of approximately 700 and a d33 of 62 pC/N (poling conditions: 8 V/μm for 5 min at 200 °C).  相似文献   

12.
V-doped barium titante ceramics were prepared by conventional solid state reaction method. XRD patterns show that V5+ ions have entered into the tetragonal perovskite structure of solid solution to substitute for Ti4+ ions on the B sites. Addition of vanadium accelerates grain growth of BTO ceramics and there is abnormal grain growth of barium titanate ceramics with higher vanadium concentration. Vanadium doping can increase the Curie temperature and decrease the dielectric loss of barium titanate ceramics. As vanadium concentration increases, the remnant polarization of V-doped BTO ceramics begins to increase and reaches the maximum and then decreases. The coercive electric field for V-doped barium titanate ceramics decreases with the increasing of vanadium concentration. As temperature rises, the remnant polarization and the coercive electric field of V-doped barium titanate ceramics decrease simultaneously.  相似文献   

13.
《Ceramics International》2016,42(14):15319-15326
The influence of lanthanum on structural, dielectric, hysteresis and electric-field-induced strain behavior in lead-free, Bismuth Sodium Barium Titanate (BNBT7) system Bi0.465−xLaxNa0.465Ba0.07TiO3 (x=0.00 to 0.10 in steps of 0.02) near the morphotrophic phase boundary has been investigated. X-ray diffraction confirms the single-phase perovskite structure with co-existence of rhombohedral and tetragonal phases has been observed in all densely packed materials. The diffuse phase transition is evident from the study of the temperature dependence of dielectric constant at different frequencies. All the samples have shown relaxor type behavior. The compositions BNBT7 and lanthanum substituted BNBT7 (x=0.02) have been considered to be suitable for transducer applications on the basis of measured parameters like dynamic piezoelectric constant d*33, 152 and 147 (pm/V), piezoelectric voltage constant g33, 14.36 and 13.37 (10−3 mV/N) and coercive field (Ec) is, 14.78 and 9.24 (kV/cm) respectively.  相似文献   

14.
15.
《Ceramics International》2023,49(2):1865-1873
Dielectric, ferroelectric, and piezoelectric properties of 0.36(Bi1-xSmx)ScO3-0.64PbTiO3 (BSPT-xSm) ceramics were investigated to assess effects of Sm-substitution on 0.36BiScO3-0.64PbTiO3 for high temperature piezoelectric device application. Optimal sintering was achieved at 1200°C when the BSPT-xSm ceramics were fully densified and crystallized with a perovskite structure without any secondary phase. The substitution of Bi3+ with Sm resulted in degradation of rhombohedral side in BSPT-xSm ceramics having morphotropic phase boundary. In addition, variations of grain size and ferroelectric behavior after Sm-substitution were insignificant. However, dielectric constant (εT33/ε0) was significantly enhanced with an increasing of amount of Sm to 5%. Although a slight decrease of relative density in case of x exceeding 3% led to deterioration of piezoelectric values of d33, kp, and d33*, the BSPT-3%Sm ceramic exhibited excellent values of d33 of 628 pC/N, kp of 62.4%, and d33* of 718 pm/V at 4.5 kV/mm, along with a high ferroelectric transition temperature of 421°C. The highly increased diffusion coefficient of 1.909 also implies that the Sm-substitution contributed to relaxor-like ferroelectric behavior of BSPT ceramics.  相似文献   

16.
Lead-free piezoelectric ceramics of Ba0.70Ca0.30Ti1?xFexO3 (x=0–0.03) have been synthesized by a conventional solid state reaction method. The influence of Fe content on the microstructure, phase transition, dielectric, ferroelectric, and piezoelectric properties is investigated systematically. The ceramics with x≤0.02 are diphasic composites of tetragonal Ba0.80Ca0.20TiO3:Fe and orthorhombic Ba0.07Ca0.93TiO3:Fe solid solutions. The tetragonal phase is gradually suppressed as x increases, the ceramic with x=0.03 is found to have diphasic pseudocubic and orthorhombic phases. And the grain size is dependent on Fe content significantly. Introduction of Fe at B-sites improves the densification and decreases the sintering temperature. As x increases from 0 to 0.03, the room temperature relative dielectric permittivity enhances, dielectric loss decreases, and the Curie temperature decreases monotonically from 128 °C to 58 °C. However, the ferroelectricity enhances slightly and reaches the maximum near x=0.005, and then weakens with increasing x. On the other hand, the piezoelectric coefficient (d33) and the electromechanical coupling coefficient (kp) decrease simultaneously with increasing x, whereas the mechanical quality factor (Qm) increases significantly. The structure–electrical properties relationship is discussed intensively to give more information on (Ba,Ca)TiO3-based lead-free piezoelectric ceramics.  相似文献   

17.
《Ceramics International》2016,42(14):15664-15670
Sodium bismuth titanate (BNT) nanopowder of molar composition 50/50 (Na0.5Bi0.5TiO3) was prepared by a sol-gel processing method. The structure and microstructure of the precursor gel as well as the ferroelectric, pyroelectric, dielectric and piezoelectric properties of the BNT were studied. BNT crystallized in the rhombohedra perovskites structure Na0.5Bi0.5TiO3 was obtained from the precursor gel by heating at 700 °C for 2 h in air. The BNT ceramic at 1100 °C sintering temperature present high crystallinity, good dielectric properties at 1 kHz (ε′=885, tan δ=0.03, Tc=370 °C), piezoelectric properties (k33=0.39, c33=105 GPa, e33=12.6 C/m2, d33=120 pC/N), high remnant polarization (Pr=47 μC/cm2) and pyroelectric coefficient (p=707 μC/m2 K) and low coercive field (Ec=55 kV/cm). Hence, the BNT prepared by sol-gel method could be used for silicon based memory device application where a low synthesis temperature is a key requirement.  相似文献   

18.
Barium zirconate titanate (40−60 vol.%; BZT), Portland cement (PC) and polyvinylidene fluoride (0−7 vol.%; PVDF) were used as raw materials to produce 0–3 piezoelectric cement-based composites. The highest piezoelectric charge coefficient (d33∼26-27 pC/N) was found at 50−60 vol.% BZT with 5 vol.% PVDF. Moreover, the composite with 50 vol.% BZT and 5 vol.% PVDF had the highest piezoelectric voltage coefficient (g33 = 16.0 × 10−3 V·m/N). Scanning electron microscopy was used to investigate the morphology of the fracture surface of the composite. When PVDF was used in the composite, it was observed to fill some pores at the interface zone and within the cement phase. The elastic behaviour of PVDF could also be seen in the fracture surface, where it appeared as a stretched material different from both the BZT ceramic and cement, which are brittle materials. In addition, increasing the PVDF content led to increased fracture toughness.  相似文献   

19.
Lead-free (1−x)(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3xBiYbO3 [(1−x)BCTZ−xBYO] piezoelectric ceramics in the range of BYO concentrations were prepared by the conventional oxide-mixed method, and the effect of BYO content on their microstructure, crystalline structure, density and electrical properties was investigated. A dense microstructure with large grain was obtained for the ceramics with the addition of BYO. The ceramics with x=0.1% exhibit an optimum electrical behavior of d33~580 pC/N, r~10.9 Ω, kp~56.4%, and tan δ~1.12% when sintered at a low temperature of ~1350 °C. When the measuring electric field is 40 kV/cm, the well-saturated and square-like PE loops for the ceramics were observed with Pr~12.2 μC/cm2 and Ec~1.83 kV/cm.  相似文献   

20.
Structural, optical and dielectric properties of Ni doped ZnO samples prepared by the solid state route are presented. X-ray diffraction confirmed the substitution of Ni on Zn sites without changing the hexagonal structure of ZnO. NiO phase appeared for 6% Ni doping. Fourier transform infrared measurements were carried out to study phonon modes in Ni doped ZnO. Significant blueshift with Ni doping was observed in UV–visible studies, strongly supported by photoluminescence spectra that show a high intensity UV emission peak followed by the low intensity green emission band corresponding to oxygen vacancies and defects. The photoluminescence analysis suggest that doping of Ni can affect defects and oxygen vacancies in ZnO and give the possibility of band gap tuning for applications in optoelectronic devices. High values of dielectric constant at low frequency and a strong dielectric anomaly around 320 °C were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号