共查询到18条相似文献,搜索用时 85 毫秒
1.
2.
对语音情感识别的起源及主要研究内容作了介绍,对国内外语音情感识别的研究现状作了归纳总结;对语音情感特征的提取、情感分类器的建模算法作了重点分析介绍,最后对情感识别未来发展方向进行了展望. 相似文献
3.
4.
基于多分类器投票组合的语音情感识别 总被引:2,自引:0,他引:2
为了提高语音情感的正确识别率,提出一种基于多分类器投票组合的语音情感识别新方法.在提取情感语音的韵律特征和音质特征基础上,利用投票方法将支持向量机、K近邻法和人工神经网络三种分类器构成组合分类器,实现对汉语生气、高兴、悲伤和惊奇4种主要情感类型的识别.实验结果表明,与使用单一分类器相比,组合分类器对语音情感的识别取得了87.4%的平均正确识别率,识别效果优于单一分类器. 相似文献
5.
6.
语音情感识别是利用计算机建立语音信息载体与情感度量之间的关系,并赋予计算机识别、理解人类情感的能力,语音情感识别在人机交互中起着重要作用,是人工智能领域重要发展方向。本文从语音情感识别在国内外发展历史以及开展的一系列会议、期刊和竞赛入手,分别从6个方面对语音情感识别的研究现状进行了梳理与归纳:首先,针对情感表达从离散、维度模型进行了阐述;其次,针对现有的情感数据库进行了统计与总结;然后,回顾了近20年部分代表性语音情感识别发展历程,并分别阐述了基于人工设计的语音情感特征的情感识别技术和基于端到端的语音情感识别技术;在此基础之上,总结了近几年的语音情感识别性能,尤其是近两年在语音领域的重要会议和期刊上的语音情感识别相关工作;介绍了语音情感识别在驾驶、智能交互领域、医疗健康,安全等领域的应用;最后,总结与阐述了语音情感识别领域仍面临的挑战与未来发展方向。本文旨在对语音情感识别相关工作进行深入分析与总结,为语音情感识别相关研究者提供有价值的参考。 相似文献
7.
语音情感识别的研究进展 总被引:11,自引:0,他引:11
情感在人类的感知、决策等过程扮演着重要角色.长期以来情感智能研究只存在于心理学和认知科学领域,近年来随着人工智能的发展,情感智能跟计算机技术结合产生了情感计算这一研究课题,这将大大的促进计算机技术的发展.情感自动识别是通向情感计算的第一步.语音作为人类最重要的交流媒介,携带着丰富的情感信息.如何从语音中自动识别说话者的情感状态近年来受到各领域研究者的广泛关注.本文从语音情感识别所涉及的几个重要问题出发,包括情感理论及情感分类、情感语音数据库、语音中的情感特征和语音情感识别算法等,介绍了当前的研究进展,并讨论了今后研究的几个关键问题. 相似文献
8.
9.
10.
11.
12.
主要讨论了情感语音特征参数的提取、语音情感的分类、语音资料的获取和应用连续隐马可夫模型进行情感识别等,重点比较了ZCPA特征参数和传统特征参数在不同噪声环境下的识别率,实验表明,在不同的噪声环境下,采用ZCPA特征的语音情感的识别效果较好,识别率也没有明显的下降。 相似文献
13.
14.
语音情感识别是人工智能的重要研究领域之一,特征参数提取的准确性直接影响识别的效果。分析了发音持续时间、平均振幅、基音频率,第一共振峰和Mel频率倒谱参数,并基于模糊熵理论提取了各参数的权重。再利用模糊熵进行有效的度量融合.最后通过改进后综合判决对情感语句做出识别判定。研究发现融合后的参数增强了情感识别的效果。 相似文献
15.
16.
一种稳健的基于Visemic LDA的口形动态特征及听视觉语音识别 总被引:4,自引:0,他引:4
视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。这种方法免去了繁重的人工标注工作,避免了标注错误。实验表明,将'VisemicLDA视觉特征引入到听视觉语音识别中,可以大大地提高噪声条件下语音识别系统的识别率;将这种视觉特征与多数据流HMM结合之后,在信噪比为10dB的强噪声情况下,识别率仍可以达到80%以上。 相似文献
17.
基于一种改进的监督流形学习算法的语音情感识别 总被引:2,自引:0,他引:2
为了有效提高语音情感识别的性能,需要对嵌入在高维声学特征空间的非线性流形上的语音特征数据作非线性降维处理。监督局部线性嵌入(SLLE)是一种典型的用于非线性降维的监督流形学习算法。该文针对SLLE存在的缺陷,提出一种能够增强低维嵌入数据的判别力,具备最优泛化能力的改进SLLE算法。利用该算法对包含韵律和音质特征的48维语音情感特征数据进行非线性降维,提取低维嵌入判别特征用于生气、高兴、悲伤和中性4类情感的识别。在自然情感语音数据库的实验结果表明,该算法仅利用较少的9维嵌入特征就取得了90.78%的最高正确识别率,比SLLE提高了15.65%。可见,该算法用于语音情感特征数据的非线性降维,可以较好地改善语音情感识别结果。 相似文献
18.
汉语语音正弦模型特征分析和听觉辨识 总被引:1,自引:0,他引:1
为了研究汉语语音的声学特征,将语音信号的正弦模型应用于语音的特征提取和分析,通过对语音的模型参数应用峰值匹配算法,得到了基于正弦模型的语谱图.该语谱图能直观地反映出语音信号中基音频率及共振峰的细节及其变化规律,为语音信号的分析提供了可视化的工具.在此基础上,对汉语单韵母音节的前两个共振峰进行了分析,在控制使用少数几个主... 相似文献