首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60Co gamma beams in terms of absorbed dose to water is taken into routine use.  相似文献   

2.
This work presents conversion coefficients per air kerma free-in-air for the personal dose equivalent, Hp(10), calculated according to its definition by the International Commission on Radiation Units and Measurements as a quantity in the human body. The values were calculated using Monte Carlo methods for various dosimeter positions in the trunk of a voxel model of an adult male, and they are given for various directions of incidence of broad parallel photon beams with energies between 10 keV and 10 MeV. It is shown that the numerical values of the personal dose equivalent depend on the exact position of the dosimeter, with maximum differences between 12% and 80%, depending on the beam geometry. It is further shown that the recommended calibration quantity Hp slab(10), which has been used in ICRP Publication 74 and ICRU Report 57 in the absence of data in the human body to approximate personal dose equivalent, does represent the latter quantity in a sensible way for some, but not all, beam geometries. Comparison of the values for the personal dose equivalent of this work with effective dose revealed that Hp(10) is a conservative estimate or close approximation of E for most irradiation geometries and photon energies.  相似文献   

3.
The absorbed gamma dose rate in air 1 m above soil due to natural gamma emitters and 137Cs from the Chernobyl accident was determined inside a Quercus conferta Kit ecosystem in Northern Greece by combination of Monte Carlo simulations with the MCNP code and in-situ gamma spectrometry measurements. The total absorbed gamma dose rate in air is about 64 nGy h(-1), where 40% of this value is due to 137Cs and 60% to natural gamma emitters. The Monte Carlo simulations indicated that the gamma absorbed dose rate in air due to 137Cs is mainly due (70%) to unscattered radiation and to a lesser extent (30%) to the scattered radiation. The results obtained with the Monte Carlo simulations for the unscattered radiation were in very good agreement with the experimental values deduced by in-situ gamma spectrometry measurements. From the combination of the Monte Carlo simulations and in-situ gamma spectrometry measurements a conversion factor C = 1 nGy h(-1)/kBq m(-2) was deduced for 137Cs. This factor must be used with caution and only for forest sites similar to the one used for this work.  相似文献   

4.
The biological response of bone marrow to incorporated radionuclides depends on several factors such as absorbed dose, dose rate, proliferation and marrow reserve. The determination of the dose rate and absorbed dose to bone marrow from incorporated radionuclides is complex. This research used survival of granulocyte-macrophage colony-forming cells (GM-CFCs) as a biological dosimeter to determine experimentally the dose rate and dose to bone marrow after administration of 90Y-citrate. METHODS: The radiochemical 90Y-citrate was administered intravenously to Swiss Webster mice. Biokinetics studies indicated that the injected 90Y quickly localized in the femurs (0.8% ID/femur) and cleared with an effective half-time of 62 hr. Subsequently, GM-CFC survival was determined as a function of femur uptake and injected activity. Finally, to calibrate GM-CFC survival as a biological dosimeter, mice were irradiated with external 137Cs gamma rays at dose rates that decreased exponentially with a half-time of 62 hr. RESULTS: Femur uptake was linearly proportional to injected activity. The survival of GM-CFCs was exponentially dependent on both the initial 90Y femur activity and the initial dose rate from external 137Cs gamma rays with 5.1 kBq/femur and 1.9 cGy/hr, respectively, required to achieve 37% survival. Thus, 90Y-citrate delivers a dose rate of 0.37 cGy/hr to the femoral marrow per kBq of femur activity and the dose rate decreased with an effective half-time of 62 hr. CONCLUSION: Survival of GM-CFCs can serve as a biological dosimeter to experimentally determine the dose rate kinetics in bone marrow.  相似文献   

5.
In this study the dosimetric properties of Plastic Water and Solid Water phantom materials are evaluated using Monte Carlo photon transport simulations. In particular, their water-equivalence with respect to absorption and attenuation of photons in the brachytherapy energy range are examined. For the given chemical compositions of the materials, the linear attenuation coefficients were calculated for photons of 1 keV-2 MeV. Moreover, absorbed doses to water in each phantom material were calculated at distances of 0.5-12.0 cm from point sources of 20 keV to 60Co gamma rays. These results show that at low photon energies (below 100 keV), there are substantial differences (up to a factor of 5) between the absorbed dose in Plastic Water and that in liquid water. The differences decrease as photon energy increases, and they become insignificant at 60Co gamma rays, as claimed by the manufacturer. In contrast, calculations show that the difference in absorbed dose in Solid Water from that in liquid water, over the entire range of photon energies employed in this study, is less than 25%. The results of this study demonstrate the necessity of careful dosimetric evaluation of a new phantom material, before its clinical application, particularly in energy ranges outside those referred to by the manufacturer.  相似文献   

6.
Values of effective dose (E) were calculated for the entire range of incident directions of broad parallel photon beams for selected photon energies using the Monte Carlo N-Particle (MCNP) transport code with a hermaphroditic phantom. The calculated results are presented in terms of conversion coefficients transforming air kerma to effective dose. This study also compared the numerical values of E and H(E) over the entire range of incident beam directions. E was always less than H(E) considering all beam directions and photon energies, but the differences were not significant except when a photon beam approaches some specific directions (overhead and underfoot). This result suggests that the current H(E) values can be directly interpreted as E or, at least, as a conservative value of E without knowing the details of irradiation geometries. Finally, based on the distributions of H(E) and E over the beam directions, this study proposes ideal angular response factors for personal dosimeters that can be used to improve the angular response properties of personal dosimeters for off-normal incident photons.  相似文献   

7.
Confluent cultures of CHO-K1 and CHO-xrs5 cells were irradiated attached to 6 microm Mylar with 137Cs gamma rays and 200 kVp X rays adjacent to scattering materials consisting of polystyrene, glass, aluminum, copper, tin and lead. The absorbed dose in cell nuclei was estimated from measurements of backscattered dose made with a parallel-plate ion chamber with a 5-microm Mylar window and a gas volume whose thickness was equivalent to approximately 2.6 microm of cells or tissue. Cell inactivation after various doses was measured by clonogenic assays after trypsinization and enumeration. Survival curves constructed from data pooled from at least two independent experiments were best fitted to a linear-quadratic (LQ) or a linear equation for CHO-K1 and CHO-xrs5 cells, respectively. An average distance of 9.3+/-1.9 microm from the scattering surfaces to the midline of nuclei for both the cell lines was estimated from electron micrographs of fixed cell sections. The major differences in biological effect observed when the cells were irradiated adjacent to these materials could be largely explained by the differences in the physical dose. Further analyses using the LQ equation suggested additional biological effects with implications for the mechanisms involved. CHO-K1 cells showed a small but consistent increase in the low-dose (alpha-inactivation coefficient) mechanism for both radiations scattered from high-Z material. An increased value of the alpha coefficient suggests an increase in RBE which could be associated with a higher proportion of low-energy and track-end electrons in these fields. The radiation fields which produced maximum single-hit killing in CHO-K1 cells also produced less killing by the quadratic (beta-inactivation coefficient) mechanism. In contrast, when similarly irradiated, CHO-xrs5 cells exhibited significantly lower alpha coefficients of inactivation. The mechanistic basis for this opposite effect of backscattered radiations in these cell lines is as yet unknown.  相似文献   

8.
Gamma flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line source dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.  相似文献   

9.
An experimental determination of the neutron kerma ratio between muscle tissue and A-150 plastic was performed at the newly commissioned d(48.5)+ Be therapy facility in Detroit. Low-pressure proportional counters with separate walls made from A-150 plastic, graphite, zirconium oxide and zirconium served to measure ionization yield spectra. The absorbed dose in the wall of each counter was determined and rendered the A-150 and carbon kerma directly, whilst that for oxygen was deduced from differences between the matched metal oxide and metal pair. This enabled the evaluation of an effective kerma ratio as a function of radiation field size and hydrogenous filtration. Although filtration was observed to harden the beam, the application of a single kerma ratio for the various irradiation conditions investigated was found to be appropriate. A neutron kerma ratio of 0.90+/-0.03 was assessed for the Detroit facility, which is lower at the 1sigma level than the 0.95 currently recommended in the dosimetry protocol for high-energy neutron beams.  相似文献   

10.
The microcolony assay technique has been used to test the validty of summing equivalent doses per fraction of 14 MeV neutrons and gamma rays for mouse intestinal damage. For a 4-daily fraction schedule, in which the first one or two fractions are given as neutrons and the remainder as gamma rays, combined dose fractions calculated from a 4-fraction schedule of either radiation type alone produce the same level of damage within the limits of accuracy of the experiment.  相似文献   

11.
Diltiazem, a calcium channel blocker, and a cardiovascular therapeutic agent offers significant protection to mice against lethal dose of ionizing radiation. Considering the potential efficacy of diltiazem as a radioprotector for human use, it was deemed necessary to investigate its influence on radiation-induced behavioural changes like nausea, vomiting, learning, memory and performance. In the present studies, conditioned taste aversion (CTA) test based on consumption of saccharin solution, was used as a marker of behavioural changes. Significant CTA (97 +/- 2%) was observed in rats irradiated with Co-60 gamma rays (absorbed dose 1 Gy). Administration of diltiazem at doses greater than 10 mg/kg, body wt, evoked CTA in a dose-dependent manner and that was found to be further aggravated on irradiation. At a lower dose of 5 mg/kg, body wt, diltiazem did not evoke CTA and protected against radiation induced aversion significantly (62 +/- 3%). The results suggest that diltiazem at concentrations lower than 10 mg/kg, body wt, in rats may be useful in preventing radiation induced behavioural changes. This observation could be of particular significance in clinical radiotherapy where radiation induced nausea and vomiting are of great concern.  相似文献   

12.
The relative biological effectiveness (RBE) of neutrons for many biological end points varies with neutron energy. To test the hypothesis that the RBE of neutrons varies with respect to their energy for chromosome aberrations in a cell system that does not face interphase death, we studied the yield of chromosome aberrations induced by monoenergetic neutrons in normal human fibroblasts at the first mitosis postirradiation. Monoenergetic neutrons at 0.22, 0.34, 0.43, 1, 5.9 and 13.6 MeV were generated at the Accelerator Facility of the Center for Radiological Research, Columbia University, and were used to irradiate plateau-phase fibroblasts at low absorbed doses from 0.3 to 1.2 Gy at a low dose rate. The reference low-LET, low-dose-rate radiation was 137Cs-gamma rays (0.66 MeV). A linear dose response (Y = alphaD) for chromosome aberrations was obtained for all monoenergetic neutrons and for the gamma rays. The yield of chromosome aberrations per unit dose was high at low neutron energies (0.22, 0.34 and 0.43 MeV) with a gradual decline with the increase in neutron energy. Maximum RBE (RBEm) values varied for the different types of chromosome aberrations. The highest RBE (24.3) for 0.22 and 0.43 MeV neutrons was observed for intrachromosomal deletions, a category of chromosomal change common in solid tumors. Even for the 13.6 MeV neutrons the RBEm (11.1) exceeded 10. These results show that the RBE of neutrons varies with neutron energy and that RBEs are dissimilar between different types of asymmetric chromosome aberrations and suggest that the radiation weighting factors applicable to low-energy neutrons need firmer delineation. This latter may best be attained with neutrons of well-defined energies. This would enable integrations of appropriate quality factors with measured radiation fields, such as those in high-altitude Earth atmosphere. The introduction of commercial flights at high altitude could result in many more individuals being exposed to neutrons than occurs in terrestrial workers, emphasizing the necessity for better-defined estimates of risk.  相似文献   

13.
A variable air-volume, parallel-plate extrapolation chamber forming an integral part of a Solid Water phantom was built to determine the absorbed dose in Solid Water directly. The sensitive air-volume of the extrapolation chamber is controlled through the movement of the chamber piston by means of a micrometer mounted to the phantom body. The relative displacement of the piston is monitored by a calibrated mechanical distance travel indicator with a precision on the order of 0.002 mm. Irradiations were carried out with cobalt-60 gamma rays, x-ray beams ranging from 4 to 18 MV, and electron beams between 6 and 22 MeV. The absorbed dose at a given depth in Solid Water is proportional to the ionization gradient measured in the Bragg-Gray cavity region with an extrapolation chamber embedded in the Solid Water phantom. The discrepancies between the doses determined in Solid Water with our uncalibrated extrapolation chamber and doses obtained with a calibrated standard thimble ionization chamber are at most 1% for photon and electron beams at all megavoltage clinical energies. Uncalibrated extrapolation chamber thus offer a simple and practical alternative to other techniques used in output measurements of megavoltage photon and electron machines.  相似文献   

14.
A model of daily-average inhalation exposures and total-absorbed doses of benzene to members of large populations was developed as part of a series of multimedia exposure and absorbed dose models. The benzene exposure and dose model is based upon probabilistic rather than sequential simulation of time-activity patterns, a simpler approach to modeling personal benzene exposures than other existing models. An important innovation of the benzene model is the incorporation of an anthropometric module for generating correlated exposure factors used to estimate absorbed doses occurring from inhalation, ingestion, and dermal absorption of benzene. A preliminary validation exercise indicates that the benzene model produces reasonable estimates of the distribution of benzene personal air concentrations expected for a large population. Uncertainty about specific percentiles of the predicted distributions of personal air concentrations was found to be dominated by uncertainty about microenvironmental benzene concentrations rather than time-activity patterns, and uncertainty about total absorbed doses was dominated by a lack of knowledge about the true absorption coefficient for benzene in the lung rather than knowledge gaps about microenvironmental concentrations or intake rates. The results of this modeling effort have implications for environmental control decisions, including evaluation of source control options, characterization of population and individual risk, and allocation of resources for future studies.  相似文献   

15.
An exhaustive revision of dosimetry data for 192Ir, 125I, 103Pd and 169Yb brachytherapy sources has been performed by means of the EGS4 simulation system. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. The absorbed dose rate per unit contained activity in a medium at 1 cm in water and air-kerma strength per unit contained activity for each seed model were calculated, allowing the dose rate constant (DRC) A to be estimated. The influence of the calibration procedure on source strength for low-energy brachytherapy seeds is discussed. Conversion factors for 125I and 103Pd seeds to obtain the dose rate in liquid water from the dose rate measured in a solid water phantom with a detector calibrated for dose to water were calculated. A theoretical estimate of the DRC for a 103Pd model 200 seed equal to 0.669 +/- 0.002 cGy h(-1) U(-1) is obtained. Comparison of obtained DRCs with measured and calculated published results shows agreement within 1.5% for 192Ir, 169Yb and 125I sources.  相似文献   

16.
The radiation absorbed dose to non-water equivalent materials of interest in radiotherapy is the dose to lung and the dose to bone. The measurement and calculation of dose to the lung has been of great interest and much effort has gone into the development of accurate lung dose calculation methods. The radiation absorbed dose to the bone is usually not calculated and most absorbed dose calculations have been done without correcting for the presence of bone. For the lower megavoltage photon beams this may be appropriate, however, as the energy of the photon beam increases, the region of electronic disequilibrium becomes larger and pair production which depends on the atomic number of the material becomes significant. Therefore the bone will produce greater perturbations of the dose distribution. The dose to lung-equivalent material is uniquely obtained from ionization measurements. However, in bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined.  相似文献   

17.
Diltiazem, a calcium ion channel blocker, already in use in cardiovascular therapeutics, has been observed to protect against bone marrow damage (cytogenetic damage, cell death) and mortality in whole body irradiated mice. The micronuclei fraction in bone marrow cells of whole body irradiated (60Co gamma rays, 2.0 Gy) mice was reduced from 2.24 +/- 0.23% to about 0.74 +/- 0.33% by preirradiation administration (-20 min) of 110 mg/kg body wt. diltiazem (ip). Endogenous colony forming unit counts in spleen of mice administered 110 mg/kg body wt. (-20 min) of diltiazem before 10 Gy whole body irradiation were 6 times more than untreated irradiated controls. Pretreatment with diltiazem accelerated the recovery of radiation induced weight loss also. Diltiazem (110 mg/kg body wt, -20 min) enhanced 30 day survival to about 95% and 85% after lethal whole body absorbed dose of 9 and 10 Gy respectively and also mitigated radiation induced life- span shortening. Post-irradiation (10 Gy) administration of diltiazem (+20 to 30 min) enhanced survival from about 2 to 15% only but was highly significant (P < 0.001). Possible modes of radioprotective action of diltiazem have been discussed.  相似文献   

18.
This paper presents two methods for absorbed dose determination with ionization chambers at short distance from 60Co and 192Ir brachytherapy sources. The methods are modifications of the Bragg-Gray and large cavity principles given in the IAEA code of practice for high- and medium-energy photon beams. A non-uniformity correction factor to account for the non-uniform electron fluence in the air cavity is introduced into the methods. The absorbed dose rates were determined from ionization chamber measurements at distances between 1.5 and 5.0 cm from the brachytherapy sources. The agreement between the two methods is excellent in 60Co brachytherapy dosimetry. For 192Ir dosimetry, the difference is less than 2.5% at all distances. In absorbed dose rate calculations with the 60Co brachytherapy source, the ratios between calculated and experimentally determined absorbed dose rates are 0.987 and 0.994 depending on the method used for absorption and scatter correction. In 192Ir dosimetry, the large cavity principle gives almost identical values to those which can be obtained with the AAPM recommendations. Using the chambers according to the Bragg-Gray principle in 192Ir dosimetry, the agreement with AAPM calculated absorbed dose rates is within 2.5% at all distances. The uncertainty, expressed as one standard deviation, in the experimentally determined absorbed dose is estimated to be between 3 and 4%.  相似文献   

19.
The interface effects arising in the measurement of absorbed dose by ionization chambers, owing to the inhomogeneity between the walls and the gas, have been evaluated by an analytical model. The geometrical situation considered here is appropriate for representing the behaviour of a plane-parallel ionization chamber exposed to a radiotherapeutic beam of protons. Two gases, dry air and tissue equivalent gas (methane based), as well as six materials commonly used in ionization chamber walls, i.e. graphite, A-150 tissue equivalent plastic, C-522 air equivalent plastic, nylon type 6, polymethyl methacrylate and polystyrene, have been examined. The analysis of the results shows that, within the limits of the detector dimensions and proton energies commonly used in the dosimetry of radiotherapeutic beams, these effects, if not taken into account in the measurement interpretation, can entail deviations of up to about 2% with respect to the correct absorbed dose in gas.  相似文献   

20.
The proportional counter microdosimetric technique has been employed to quantify variations in the quality of a d(48.5)+Be fast neutron beam passing through a homogeneous water phantom. Single event spectra have been measured as a function of spatial location in the water phantom and field size. The measured spectra have been separated into component spectra corresponding to the gamma, recoil proton and alpha plus heavy recoil ion contribution to the total absorbed dose. The total absorbed dose normalized to the "monitor units" used in daily clinical use has been calculated from the measured spectra and compared to the data measured with calibrated ion chambers. The present measurements agree with the ion chamber data to within 5%. The RBE of the neutron beam is assumed to be proportional to the microdosimetric parameter y* for the dose ranges pertinent to fractionated neutron therapy. The relative variations in y*, assumed to be representative of variations in the RBE are mapped as a function of field size and spatial location in the phantom. A variation in the RBE of about 4% for points within and 8% for points outside a 10 cm x 10 cm field is observed. The variations in the RBE within the beam are caused by an increase in the gamma component with depth. An increase in the RBE of about 4% is observed with increasing field size which is attributed to a change in the neutron spectrum. Compared to the uncertainties in the prescribed dose, associated with uncertainties in the clinically used RBE, variation in the RBE between various tissues, and other dosimetric uncertainties caused by factors such as patient inhomogeneities, patient setup errors, patient motion, etc., the measured spatial RBE variations are not considered significant enough to be incorporated into the treatment planning scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号