首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium elaidate in slightly alkaline solution was hydrogenated for up to 7 hr with 1.5% of Rufert nickel catalyst at 150 C and 20 kg/sq cm pressure. Potassium linoleate was similarly hydrogenated with 1.0% catalyst for 7 hr, and the hydrogenation continued for another 7 hr after addition of 0.5% fresh catalyst. Periodic samples from each were analyzed for component acids. The positional isomers in thecis andtrans monoenes, isolated by preparative argentation thin layer (TLC) or column chromatography, were estimated after oxidation to dicarboxylic acids. Some diene fractions were isolated for further examination. In potassium elaidate hydrogenation,cis monoenes were initially produced in considerable amounts, but to a lesser extent thereafter. Positional isomers were similarly distributed in bothcis andtrans monoenes after prolonged hydrogenation. In the hydrogenation of potassium linoleate, a drop in iodine value (IV) of 60 units occurred in the first hour, and 38% oftrans monoenes (in which the 10- and 11-monoenes constitute 32% each) were formed. The IV then fell only slowly, and up to 38% ofcis monoene (mostly 9- and 12-isomers) was formed. Addition of fresh catalyst caused a major shift ofcis monoenes totrans forms. The diene fraction was mostly nonconjugated material with the first double bond at the 9, 8 and 10-positions. Minor amounts of conjugated dienes were present as well as a dimeric product.  相似文献   

2.
Methylcis-9,cis-12-octadecadienoate (methyl linoleate;c9,c12), itst10,t12 andt10,c12 isomers and methylcis-9-octadecenoate (methyl oleate;c9) were hydrogenated with rhodium complexes, the active species of which consisted of [RhL2]+ and [RhL2H2]+ with ligands L=P(C2H5)2C6H5 (catalyst A) P(i-C4H9)3 (catalyst B) and P(CH3)3 (catalyst C). Using these catalysts the influence of steric effects on the reaction mechanism of hydrogenation of dienes was studied. The reactions were carried out in 2-propanol at atmospheric hydrogen pressure and ambient temperature. During hydrogenation ofc9 on catalysts A and B, geometrical isomerization mainly occurred, whereas on catalyst C some positional isomerization also took place.C9,c12 was almost exclusively hydrogenated via conjugated intermediates on catalyst A. On catalyst C, one of the double bonds was hydrogenated directly, in most cases. In the absence of hydrogen, catalysts A and B conjugatedc9,c12 very fast. The conjugation activity of catalyst C was much lower. Catalyst C showed a high 1,5-shift activity for the conjugatedcis, trans andtrans, cis intermediates during hydrogenation, in contrast to catalysts A and B, which showed a poor activity in this respect.T10,t12 was hydrogenated almost exclusively via 1,4-addition of hydrogen to thecisoid conformation, whereas only a slight preference was found in this mechanism over 1,2-addition for the hydrogenation oft10,c12. On the sterically unhindered catalysts A and C thetrans double bond int10,c12 was preferentially hydrogenated whereas on catalyst B, with its bulky ligands, thecis double bond was reduced faster than thetrans double bond.  相似文献   

3.
Alkali-conjugated linoleate (cis-9,trans-11- andtrans-10,cis-12-octadecadienoate) was hydrogenated with nickel, palladium and platinum catalysts. Thetrans andcis monoenes formed during reduction were isolated, and their double bond distribution was determined by reductive ozonolysis and gas liquid chromatography. About 44–69% of the monoenes were composed of δ10 and δ11 trans monoene isomers, whereas the δ9 and δ12 cis monoenes amounted to 20–26%. With nickel catalyst, composition of monoene isomers remained the same, even when the hydrogenation temperature was increased. The monoene isomer profiles between nickel and palladium catalysts were indistinguishable. Isomerization of monoenes with platinum catalyst was suppressed at 80 psi. The position of the double bonds in unreacted conjugated diene was always retained, except with nickel at both temperatures and with platinum at 150 C when a slight migration occurred. Geometrical isomerization totrans,trans-conjugated diene was observed in the unreacted diene with nickel (ca. 15% of diene) at both 100 C and 195 C, and with platinum (ca. 7% of diene) at 150 C. ARS, USDA.  相似文献   

4.
Samples taken during deuteration of methyl linoleate with the title catalysts were separated into saturate, monoene and diene fractions. Monoenes were further separated intocis andtrans fractions. A comparison of the double bond distribution in monoenes with those from hydrogenation of alkaliconjugated linoleate indicated that up to 59% of the linoleate was reduced through a conjugated intermediate with nickel catalyst. The respective percentages for palladium and platinum catalysts were 51 and 23. Copper catalysts have previously been shown to reduce linoleate solely through conjugated intermediates. Copper-chromite catalyst showed infinite selectivity for the reduction of linoleate, because stearate did not form. The decreasing order of various catalysts for the selective reduction was copper-chromite>>>Ni at 195 C>Pd>Ni at 100 C>Pt. Computer simulation of platinum reduction indicated that ca. 20% of the linoleate was directly reduced to stearate through a shunt. Geometrical isomers of linoleate were formed during reduction with all catalysts except copper-chromite. Nickel catalyst formed bothtrans,trans- andcis,trans-isomers, as well as nonconjugatable dienes. These isomers were favored at the higher temperature and deuterium was incorporated into them. Palladium and platinum did not isomerize linoleate to nonconjugatable dienes. Because conjugated dienes are more reactive than linoleate, they were not found in appreciable amounts during reduction. Conjugated dienes were the only isomers formed with copper-chromite catalyst. Deuterium was found in these conjugated dienes, which were also extensively isomerized. As a result of isomerization and exchange during reduction of linoleate-as well as further exchange between deuterium and monoenes-a wide distribution of isotopic isomers in monoenes was found with nickel, palladium and platinum catalysts. Since isomerization of monoenes with copper-chromite is negligible, the isotopic distribution of monoenes must be due to exchange of intermediate conjugated dienes followed by addition. Presented at the AOCS Meeting, Ottawa, September 1972. ARS, USDA.  相似文献   

5.
The reaction of copper stearate with triethylaluminum (TEAL) formed a soluble catalyst that promoted the selective hydrogenation of the linolenyl groups in soybean oil. This homogeneous catalyst was more active than copper-chromite. The activity was enhanced by the addition of silica, alumina or titania. Ethyl alcohol accelerated the hydrogenation when it was added in small amounts and retarded hydrogenation when increased amounts were added. More active and, in some cases, more selective catalysts were formed when TEAL was replaced by trialkylaluminum compounds containing longer chain length in the alkyl groups. Among other organometallics tested, diethylmagnesium and diisobutylaluminum ethoxide formed catalysts with activity comparable to heterogeneous catalysts (KLe/KLo=2.8~5.2) was less than that obtained with copper-chromite (12~14), but greater than that of commercially used nickel catalysts (2). Isomerization, as measured by the percentage oftrans isomers formed, was similar to that of heterogeneous copper catalysts (%trans/ΔIV=0.6~0.7). Presented at the AOCS meeting in New Orleans, May 1981.  相似文献   

6.
Different Rh complex catalysts were compared for the hydrogenation of methyl sorbate and linoleate in the absence of solvents. At 100 C and 1 atm H2 the following complexes, RhCl(Ph3 P)3 (Ph= phenyl), [RhClNBD]2 (NBD=norbornadiene) and RhH(CO)(Ph3P)3, produced mainly methyltrans-2-hexenoate (34 to 56%). Their diene selectivity was not particularly high as they produced 14 to 41% methyl hexanoate. With RhCl(Ph3 P)3 constant ratios between rates of methyl sorbate disappearance and formation of methyltrans-2- andtrans-3-hexenoate indicate approximately the same activation energy for 1,2-addition of H2 on the Δ4 double bond of methyl sorbate and for 1,4-addition to this substrate. In the hydrogenation of methyl linoleate with RhCl(Ph3 P)3, the kinetic curves were simulated by a scheme in which 1,2-reduction was more than twice as important as 1,4-addition of H2 via conjugated diene intermediates. Although the complexes RhCl(CO)(Ph3 P)3 and [Rh(NBD)(diphos)]+PF6 (diphos=diphosphine) were inactive in the hydrogenation of methyl sorbate, they catalyzed the hydrogenation of methyl linoleate at 100 C and 1 atm. Catalyst inhibition apparently was caused by stronger complex formation with methyl sorbate than with the conjugated dienes formed from methyl linoleate.  相似文献   

7.
Catalytic isomerization of safflower oil with rhodium complexes   总被引:1,自引:0,他引:1  
Cationic rhodium (I) complexes of the type [(NBD)RhL2]+ ClO4 (NBD, norbornadiene; L, triphenyl phosphine or diphenyl phosphino ethane) have been studied as catalysts for the isomerization of methyl linoleate and safflower oil. The catalysts gave very good yields of conjugated products with both oil and methyl linoleate. Isomerization could be carried out under very mild conditions (55–65 C, 1 atm N2). Although the catalyst undergoes transformation in the course of the reaction, it maintains its catalytic activity. In fact, the catalysts isolated from the reaction with safflower oil were recycled with practically no loss of activity.  相似文献   

8.
A cationic rhodium(I) complex, viz. Rh NBD diphos+ 4-CH3-C6H5SO 3 [NBD = norbornadiene, diphos = (C6H5)2 P-CH2-CH2-P(C6H5)2], has been used as a homogeneous catalyst for the hydrogenation of soybean oil in acetone solution. This complex acts almost in the same way as the corresponding ones with ClO 4 or PF 6 as conuterions, i.e., it gives high polyene selectivity and low formation oftrans isomers. Because of the somewhat stronger basic character of the p-toluene-sulfonate ion compared with the perchlorate and hexafluorphosphate ions, the relative proportion of reaction via the so-called monohydride path is larger in the present case. When the ionic complex, Rh NBD diphos+, is bound to a solid support, e.g., to the anionic sites of sulfonated polystyrene resins, a nearly total lack of catalytic activity is observed. Possible reasons for these effects are discussed-in terms of π-arene-metal binding and covalent coordination of the sulfonate group.  相似文献   

9.
Soybean oil was partially hydrogenated with copper-chromite catalyst at 170 C and up to 30,000 psig hydrogen pressure. Catalyst activity increased with increase in pressure up to 15,000 psig. The linolenate selectivity (SLn) of the reaction remained essentially unchanged over 50–1000 psig pressure range. A SLn of 5.5 to 5.6 was achieved at 15,000 to 30,000 psig pressure range. This value is somewhat lower than the selectivity at 50–1000 psig, but much higher than that obtained with nickel catalysts. Geometric isomerization increased as pressure increased up to 200 psig; above this pressure, the percenttrans remained the same up to 500 psig.trans Isomer content decreased when the pressure was increased to 30,000 psig. cis,trans Isomerization of linoleate was greater at 1000 psig and 15,000 psig than at 50 psig. At 15,000 psig, part of the linoleate in soybean oil was hydrogenated directly without prior conjugation, whereas at low pressures, all of the double bonds first conjugate prior to hydrogenation. This difference in mechanism might explain the lower selectivities obtained at high pressures. Conjugated diene isomers were found in the products up to 200 psig. Above this pressure conjugated diene was not measurable. No significant differences were found in the double bond distribution oftrans monoenes even though the amount oftrans monoene formed decreased as pressure was increased to 30,000 psig. 1 Presented at the AOCS meeting, San Francisco, May 1979.  相似文献   

10.
The selective hydrogenation of methyl linoleate was studied using indoline and isopropyl alcohol as hydrogen sources. Many transition metal compounds and metallic palladium were examined as catalysts. High selectivity to monoenes and little formation oftrans isomers were realized under mild conditions in some reaction systems. For example, the system in which isopropyl alcohol and RuCl2(PPh3)3 were used as hydrogen donor and catalyst was excellent. Also in the hydrogen transfer from indoline to the linoleate catalyzed by PdCl2 and (NH4)2PdCl4, high selec-tivity was realized. In the RuCl2(PPh3)3-isopropyl alcohol, (NH4)2PdCl4-indoline and PdCl2-indoline system, methylcis- trans conjugated octadecadienoate was reduced rapidly with complete selectivity, where-as the same hydrogen transfer systems resulted in little if any reaction with methyl oleate. High selec-tivity in the reduction of linoleate is presumed to be realized through prior conjugation of the substrate.  相似文献   

11.
Catalytic hydrogenation of linoleic acid on nickel,copper, and palladium   总被引:1,自引:0,他引:1  
The catalytic activity and selectivity for hydrogenation of linoleic acid were studied on Ni, Cu, and Pd catalysts. A detailed analysis of the reaction product was performed by a gas-liquid chromatograph, equipped with a capillary column, and Fourier transform-infrared spectroscopy. Geometrical and positional isomerization of linoleic acid occurred during hydrogenation, and many kinds of linoleic acid isomers (trans-9,trans-12; trans-8,cis-12 orcis-9,trans-13; cis-9,trans-12; trans-9,cis-12 andcis-9,cis-12 18∶2) were contained in the reaction products. The monoenoic acids in the partial hydrogenation products contained eight kinds of isomers and showed different isomer distributions on Ni, Cu, and Pd catalysts, respectively. The positional isomers of monoenoic acid were produced by double-bond migration during hydrogenation. On Ni and Pd catalysts, the yield ofcis-12 andtrans-12 monoenoic acids was larger than that ofcis-9 andtrans-9 monoenoic acids. On the contrary, the yield ofcis-9 andtrans-9 monoenoic acids was larger than that ofcis-12 andtrans-12 monoenoic acids on Cu catalyst. From these results, it is concluded that the double bond closer to the methyl group (Δ12) and that to the carboxyl group (Δ9) show different reactivity for hydrogenation on Ni, Cu, and Pd catalysts. Monoenoic acid formation was more selective on Cu catalyst than on Ni and Pd catalysts.  相似文献   

12.
The need for a selective catalyst to hydrogenate linolenate in soybean oil has prompted our continuing study of various model triunsaturated fats. Hydrogenation of methylβ-eleostearate (methyltrans,trans,trans-9,11,13-octadecatrienoate) with Cr(CO)3 complexes yielded diene products expected from 1,4-addition (trans-9,cis-12- andcis-10,trans-13-octadecadienoates). Withα-eleostearate (cis,trans,trans-9,11,13-octadecatrienoate), stereoselective 1,4-reduction of thetrans,trans-diene portion yielded linoleate (cis,cis-9,12-octadecadienoate). However,cis,trans-1,4-dienes were also formed from the apparent isomerization ofα- toβ-eleostearate. Hydrogenation of methyl linolenate (methylcis,cis,cis-9,12,15-octadecatrienoate) produced a mixture of isomeric dienes and monoenes attributed to conjugation occurring as an intermediate step. The hydrogenation ofα-eleostearin in tung oil was more stereoselective in forming thecis,cis-diene than the corresponding methyl ester. Hydrogenation of linseed oil yielded a mixture of dienes and monoenes containing 7%trans unsaturation. We have suggested how the mechanism of stereoselective hydrogenation with Cr(CO)3 catalysts can be applied to the problem of selective hydrogenation of linolenate in soybean oil. No. Market. Nutr. Res. Div., ARS, USDA.  相似文献   

13.
We have compared a nickel with a copper catalyst in the formation of some geometrical and positional isomers during the partial hydrogenation of trilinolein. The copper catalyst was found to produce fewer diene isomers than the nickel catalyst at a comparable iodine value. The copper catalyst produced more monoene isomers however, than did the nickel, particularlytrans monoenes. The distribution of the monoene isomers appeared to obey an equilibrium relationship with each other, independent of both iodine value and reaction conditions. We have presented additional evidence to postulate that copper catalysts hydrogenate polyenoic acids by first conjugating the acids. The selectivity of copper catalysts for triene over diene is probably due to the greater ease of conjugation of the triene.  相似文献   

14.
Soybean oil was hydrogenated continuously in the presence of nickel catalysts. The iodine value of the products was varied by changing the oil flow rate and temperature of the reaction. Sulfur-promoted nickel catalyst increased the selectivity for linolenate hydrogenation, but formed much higher proportions oftrans isomers. Linoleate selectivity improved with temperature with both nickel and sulfur-promoted nickel catalysts, buttrans isomerization also increased. The feasibility of this continuous reactor system was demonstrated as a practical means to prepare hydrogenated stocks of desired composition and physical characteristics at high throughput.  相似文献   

15.
Soybean oil was hydrogenated with a carbon‐supported ruthenium catalyst (Ru/C) at 165 °C, 2 bar H2 and 500 rpm stirring speed. Reaction rates, trans isomer formation, selectivity ratios and melting behaviors of the samples were monitored. No catalytic activity was found for the application of 10 ppm of the catalyst, and significant catalytic activity appeared at >50 ppm of active catalyst. The catalyst concentration had an effect on the reaction rate of hydrogenation, but the weight‐normalized reaction rate constant (kc) was almost independent of the catalyst concentration at lower iodine values. Ru/C generated considerable amounts of trans fatty acids (TFA), including high amounts of trans 18:2, and also stearic acid, due to its very non‐selective nature. The selectivity ratios were found to be low and varied between 1.12 and 4.32 during the reactions. On the other hand, because of the low selectivity, higher slip melting points and solid fat contents at high temperatures were obtained than those for nickel and palladium catalysts. Another different characteristic of this catalyst was the formation (max 1.67%) of conjugated linoleic acid (CLA) during hydrogenation. Besides, CLA formation in the early stages of the reactions did not change very much with the lower iodine values.  相似文献   

16.
The cyclopropene acid groups in cottonseed oil can be modified by a light hydrogenation which will not produce large amounts oftrans isomers or lower the iodine value to a significant extent. Optimum conditions, as indicated by this investigation, are 105-115C, 20 psig hydrogen pressure, 0.1% electrolytic nickel as catalyst, and a low hydrogen-dispersion rate. Under milder conditions of hydrogenation the elimination of the cyclopropenes was accompanied by a lower formation oftrans isomers and a lower hydrogenation of noncyclopropenes, but the time required increased. In one hydrogenation carried out with commercial nickel catalyst, the 0.4% of malvalic acid groups in the cottonseed oil was hydrogenated completely whereas the iodine value was reduced by only 1.7 units and only 2.1% oftrans isomers was formed. AVinterization of cottonseed oils which had been hydrogenated to the point of eliminating their response to the Halphen test and in which only small amounts of saturated acid groups andtrans isomers had been formed gave yields equal to or better than those of the original oil. Hydrogénation actually increased the ease of winterization. 2 So. Utiliz. Ees. Dev. Div, ARS, USDA.  相似文献   

17.
The products formed by hydrogenation of methylcis-9,trans-12- andtrans-9,trans-12-octadecadienoates with nickel and platinum catalysts have been compared with those from methyl esters of the naturally occurring all-cis linoleate. Hydrogen uptake is slower for thetrans isomers. Much of the monoene consisted of esters with double bonds at the 9 and 12 positions with their original geometric configurations. Monoenoic esters with double bonds at the 10 and 11 positions were predominatelytrans and apparently formed by conjugation before hydrogenation. Nickel produced more isomerization than platinum but less than previously reported for copper. With both catalysts hydrogenation proceeded both directly and through conjugated intermediates, in contrast to copper in which all hydrogenation is believed to follow conjugation. Presented at the AOCS Meeting, Los Angeles, April 1972. ARS, USDA.  相似文献   

18.
Palladium chloride has been anchored to phosphinated, cross-linked polystyrene by substitution of the pyridine ligand in Cl2 Pd-(NC5H5)2 with the polymeric phosphine. By analytical and infrared studies of the prepared catalyst, it has been shown that the main species formed in the matrix is the half-substituted complex Cl2 Pd-(NC5H5)P-PS (P-PS=polymeric benzyldiphenylphosphine). This polymer-bound palladium complex has been tested together with two other preparations, both of which are bisphosphine complexes, as catalysts for hydrogenation of soybean oil. The results show that the presence of the mixed phosphine-pyridine complex is necessary for catalytic activity under ambient conditions. The monoene fraction of the oil is hydrogenated very slowly, but the polyene fraction is reduced quickly. Relatively large amounts oftrans-isomers are formed, however, in the reaction. It has been noted that the activation of the catalyst is coupled to a release of pyridine from the catalyst. It is proposed that after the release of pyridine, further reactions take place inside the polymer which cause the catalyst to be active under mild conditions.  相似文献   

19.
The presence oftrans octadecenoic acid isomers was detected and analyzed in 24 hr pooled samples of human milk. Amounts of thetrans isomers of the C18 monoenes ranged from 2% to 4% of the total fatty acids. For purposes of comparison, three commonly used brands of infant formula were also analyzed and found to contain 0.1% to 1.3% oftrans monoene isomers. Data indicate that breast-fed and bottle-fed infants are receiving minimal levels oftrans fatty acids via milk.  相似文献   

20.
This work is aimed at evaluating the performance of several catalysts in the partial hydrogenation of sunflower oil. The catalysts are composed of noble (Pd and Pt) and base metals (Ni, Co and Cu), supported on both silica and alumina. The following order can be proposed for the effect of the metal on the hydrogenation activity: Pd > Pt > Ni > Co > Cu. At a target iodine value of 70 (a typical value for oleomargarine), the production of trans isomers is minimum for supported nickel catalysts (25.7–32.4 %, depending on the operating conditions). Regarding the effect of the support, Al2O3 allows for more active catalysts based on noble metals (Pd and Pt) and Co, the effect being much more pronounced for Pt. Binary mixtures of catalysts have been studied, in order to strike a balance between catalyst activity and product distribution. The results evidence that Pd/Al2O3–Co/SiO2 mixture has a good balance between activity and selectivity, and leads to a very low production of trans isomers (11.8 %) and a moderate amount of saturated stearic acid (13.5 %). Consequently, the utilization of cobalt‐based catalysts (or the addition of cobalt to other metallic catalysts) could be considered a promising alternative for the hydrogenation of edible oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号