共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple energy‐based model for nonproportional low‐cycle multiaxial fatigue life prediction under constant‐amplitude loading 下载免费PDF全文
From the literature concerning the traditional nonproportional (NP) multiaxial cyclic fatigue prediction, special attentions are usually paid to multiaxial constitutive relations to quantify fatigue damage accumulation. As a result, estimation of NP hardening effect decided by the entire history path is always proposed, which is a challenging and complex task. To simplify the procedure of multiaxial fatigue life prediction of engineering components, in this paper, a novel effective energy parameter based on simple material properties is proposed. The parameter combines uniaxial cyclic plastic work and NP hardening effects. The fatigue life has been assessed based on traditional multiaxial fatigue criterion and the proposed parameter, which has been validated by experimental results of 316 L stainless steel under different low‐cycle loading paths. 相似文献
3.
J. LI J. LIU Q. SUN Z.‐P. ZHANG Y.‐J. QIAO 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(4):301-316
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading. 相似文献
4.
Cumulative damage model based on equivalent fatigue under multiaxial thermomechanical random loading
Luo‐Jin Li De‐Guang Shang Dao‐Hang Li Long Xue Xiao‐Dong Liu Xiang Yin Cheng‐Cheng Zhang Bo Chen 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(8):1851-1868
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results. 相似文献
5.
Cumulative fatigue damage evaluations on spot‐welded joints using 590 MPa‐class automobile steel 下载免费PDF全文
R. Tanegashima I. Ohara H. Akebono M. Kato A. Sugeta 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(7):870-879
This study focused on local strain behaviour near the slit edge of spot‐welded joints, where the fatigue crack initiated, and investigated methods of evaluating cumulative fatigue damage. A method of evaluating local strain amplitude by following modified Goodman's law gave almost the same result as an evaluation approach based on the external force and provided reasonable result on general strength design. An approach based on Smith–Watson–Topper's equation was easy to evaluate cumulative fatigue damage compared with the method based on modified Goodman's law and gave a good agreement with a criterion of the modified Miner's rule. 相似文献
6.
7.
Ales Gosar Marko Nagode Simon Oman 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(1):307-320
This paper details an advanced method of continuous fatigue damage prediction of rubber fibre composite structures. A novel multiaxial energy‐based approach incorporating a mean stress correction is presented and also used to predict the fatigue life of a commercial vehicle air spring. The variations of elastic strain and complementary energies are joined to form the energy damage parameter. Material parameter α is introduced to adapt for any observed mean stress effect as well as being able to reproduce the well‐known Smith‐Watson‐Topper criterion. Since integration to calculate the energies is simplified, the approach can be employed regardless of the complexity of the thermo‐mechanical load history. Several numerical simulations and experimental tests were performed in order to obtain the required stress‐strain tensors and the corresponding fatigue lives, respectively. In simulations, the rubber material of the air spring was simulated as nonlinear elastic. The mean stress parameter α , which controls the influence of the mean stress on fatigue life, was adjusted with respect to those energy life curves obtained experimentally. The predicted fatigue life and the location of failure are in very good agreement with experimental observations. 相似文献
8.
Fatigue life prediction based on equivalent stresses for laser beam welded 6156 Al‐alloy joints under variable amplitude loading 下载免费PDF全文
H. Liu D.‐G. Shang J.‐Z. Liu Z.‐K. Guo 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(8):997-1005
In the present work, a simple fatigue life prediction approach is proposed using fracture mechanics for laser beam welded Al‐alloy joints under variable amplitude loading. In the proposed approach, variable amplitude loading sequence is transformed into an equivalent constant amplitude loading using the root mean square model. The crack growth driving force K* is chosen to describe the fatigue crack growth rate. The influences of residual stress and its relaxation on fatigue life are taken into account in the proposed approach. The fatigue lives are also predicted using the traditional approach based on the S‐N curves and the rainflow counting method. The predicted results show that the proposed approach is better than the traditional approach. 相似文献
9.
Use of an energy‐based/critical plane model to assess fatigue life under low‐cycle multiaxial cycles
Lei Gan Hao Wu Zheng Zhong 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(12):2694-2708
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ* is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models. 相似文献
10.
Xiaojia Wang Qingchun Meng Weiping Hu 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(6):1373-1386
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data. 相似文献
11.
Fatigue strength assessment of partial and full‐penetration steel and aluminium butt‐welded joints according to the peak stress method 下载免费PDF全文
G. Meneghetti A. Campagnolo F. Berto 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(12):1419-1431
In fatigue design of welded joints, the local approach based on the notch stress intensity factors (NSIFs) assumes that the weld toe profile is a sharp V‐notch having a tip radius equal to zero, while the root side is a pre‐crack in the structure. The peak stress method (PSM) is an engineering, FE‐oriented application of the NSIF approach to fatigue design of welded joints, which takes advantage of the elastic peak stresses from FE analyses carried out by using a given mesh pattern, where the element type is kept constant and the average element size can be chosen arbitrarily within a given range. The meshes required for the PSM application are rather coarse if compared with those necessary to evaluate the NSIFs from the local stress distributions. In this paper, the PSM is extended for the first time to butt‐welded joints in steel as well as in aluminium alloys, by comparing a number of experimental data taken from the literature with the design scatter bands previously calibrated on results relevant only to fillet‐welded joints. A major problem in the case of butt‐welded joints is to define the weld bead geometry with reasonable accuracy. Only in few cases such geometrical data were available, and this fact made the application of the local approaches more difficult. Provided the local geometry is defined, the PSM can be easily applied: a properly defined design stress, that is, the equivalent peak stress, is shown (i) to single out the crack initiation point in cases where competition between root and toe failure exists and (ii) to correlate with good approximation all analysed experimental data. 相似文献
12.
Fatigue behaviour of 16Mo3 steel at elevated temperatures under uniaxial as well as biaxial‐planar loading 下载免费PDF全文
D Kulawinski M Hoffmann A Weidner T Lippmann G Lamprecht S Henkel H Biermann 《Fatigue & Fracture of Engineering Materials & Structures》2017,40(6):909-923
The isothermal fatigue behaviour of the ferritic steel 16Mo3 was investigated at 200 and 500 °C under uniaxial and biaxial‐planar loading. Furthermore, thermo‐mechanical fatigue behaviour under uniaxial loading was characterized under in‐phase (IP) and out‐of‐phase (OP) conditions between 200 and 500 °C. The fatigue lives of uniaxial and biaxial loading are in a good agreement to each other by using the distortion energy hypothesis according to von Mises. Under IP and OP thermo‐mechanical loading, nearly the same lifetimes were determined. They agree well with those of the isothermal tests at 500 °C. A recently developed fatigue lifetime model was applied on all tests and shows an excellent agreement within a scatter of two. 相似文献
13.
H. CHEN D.‐G. SHANG E.‐T. LIU 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(10):782-791
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction. 相似文献
14.
变幅加载下沥青的疲劳损伤累积具有明显的非线性特征,传统的Miner’s线性疲劳损伤累积准则无法表征不同变幅加载次序下沥青的非线性疲劳损伤累积(NLFDA)。该研究旨在建立考虑加载次序影响的NLFDA模型,准确表征加载次序对沥青疲劳损伤累积的影响。通过开展应力控制的沥青恒幅加载疲劳试验,采用耗散伪应变能(DPSE)表征沥青疲劳损伤,分析恒幅加载下沥青的疲劳损伤累积规律;采用低-高和高-低两种加载次序,开展应力控制的沥青变幅加载疲劳试验,分析变幅加载下沥青的疲劳损伤累积规律;基于损伤等效准则,建立考虑加载次序影响的NLFDA模型,分析加载次序对疲劳损伤累积的影响。结果表明:应力控制模式下的沥青疲劳损伤,呈先缓慢后急剧的非线性增加演化趋势;恒幅加载下沥青疲劳损伤服从Miner’s准则发生线性累积,且累积寿命分数等于1;变幅加载下沥青疲劳损伤不服从Miner’s准则而发生非线性累积。低-高和高-低变幅加载次序下,沥青累积疲劳寿命随一级寿命分数的增大而分别增加和减小,累积寿命分数分别大于1和小于1;建立的NLFDA模型可克服Miner’s准则缺陷,并较为准确地表征加载次序对沥青疲劳损伤累积的影响。
相似文献15.
G. H. Farrahi M. Azadi G. Winter W. Eichlseder 《Fatigue & Fracture of Engineering Materials & Structures》2013,36(12):1323-1335
In this paper, a new fatigue lifetime prediction model is presented for the aluminium–silicon–magnesium alloy, A356.0. This model is based on the plastic strain energy density per cycle including two correction factors in order to consider the effect of the mean stress and the maximum temperature. The thermal term considers creep and oxidation damages in A356.0 alloy. To calibrate the model, isothermal fatigue and out‐of‐phase thermo‐mechanical fatigue (TMF) tests were conducted on the A356.0 alloy. Results showed an improvement in predicting fatigue lifetimes by the present model in comparison with classical theories and also the plastic strain energy density (without any correction factors). Therefore, this model is applicable for TMF, low cycle fatigue (LCF) and both TMF/LCF lifetimes of the A356.0 alloy. Furthermore, this model can be easily used for the estimation of thermo‐mechanical conditions in components such as cylinder heads. 相似文献
16.
J. LI Z. ZHANG Q. SUN C. LI 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(4):280-290
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths. 相似文献
17.
A hybrid frequency–time domain method for predicting multiaxial fatigue life of 7075‐T6 aluminium alloy under random loading 下载免费PDF全文
J. Ge Y. Sun S. Zhou L. Zhang Y. Zhang Q. Zhang 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(3):247-256
A hybrid frequency–time domain method for predicting multiaxial fatigue life under random loading is developed on the basis of combination of the frequency domain and time domain analysis. The critical damage point of the structure is determined by the frequency domain equivalent stress method. Then, the fatigue life prediction is made in time domain by generating random load‐time histories from the power spectral density of the critical point. The method is validated with the random vibration fatigue test of 7075‐T6 aluminium alloy. It has been shown that the results of fatigue life calculated by hybrid method are well correlated with the experiment. 相似文献
18.
A fatigue driving energy approach to high‐cycle fatigue life estimation under variable amplitude loading 下载免费PDF全文
Z. Peng H‐Z. Huang S‐P. Zhu H. Gao Z. Lv 《Fatigue & Fracture of Engineering Materials & Structures》2016,39(2):180-193
In this paper, a concept of fatigue driving energy is formulated to describe the process of fatigue failure. The parameter is taken as a combination of the fatigue driving stress and strain energy density. By assessing the change of this parameter, a new non‐linear damage model is proposed for residual life estimation within high‐cycle fatigue regime under variable amplitude loading. In order to consider the effects of loading histories on damage accumulation under such condition, the load interaction effects are incorporated into the new model, and a modified version is thus developed. Life predictions by these two models and Miner rule are compared using experimental data from literature. The results show that the proposed model gives lower deviations than the Miner rule, while the modified model shows better prediction performances than the others. Moreover, the proposed model and its modifications are ease of implementation with the use of S–N curve. 相似文献
19.
G. R. AHMADZADEH A. VARVANI‐FARAHANI 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(10):962-970
This study intends to investigate the concurrent interaction of fatigue damage and ratcheting strain in two commonly used steel alloys of (American Society for Testing and Materials) ASTM A‐516 Gr.70 and 42CrMo, respectively for pressure vessels and high grade machinery parts over uniaxial stress cycles. Ratcheting extension and fatigue damage progress were both characterized cycle‐by‐cycle over life cycles of tested materials. The interaction of ratcheting and fatigue damage was defined based on mechanistic parameters involving the effects of mean stress, stress amplitude and cyclic softening/hardening response of materials. The extent of ratcheting effect was defined by product of average ratcheting strain per cycle, and maximum stress value during a cycle, while fatigue damage was analysed based on earlier developed energy‐based models of Xia–Ellyin, and Smith–Watson–Topper. Overall damage due to ratcheting and fatigue was calibrated through a weighting factor at various mean/ cyclic amplitude stresses. An algorithm was developed to evaluate overall damage due to ratcheting and fatigue stress cycles of materials subjected to various mean and amplitude stresses. The estimated lives at different mean stresses and stress amplitudes for ASTM A‐516 Gr.70 and 42CrMo samples showed good agreements as compared with those of reported experimental data. 相似文献
20.
In this paper generalized criteria of multiaxial random fatigue based on stress, strain and strain energy density parameters in the critical plane have been discussed. The proposed criteria reduce multiaxial state of stress to the equivalent uniaxial tension–compression or alternating bending. Relations between the coefficients occurring in the considered criteria have been derived. Thus, it is possible to take into account fatigue properties of materials under simple loading states during determination of the multiaxial fatigue life. Presented models have successfully correlated fatigue lives of cast iron GGG40 and steel 18G2A specimens under constant amplitude in‐phase and out‐of‐phase loadings including different frequencies. 相似文献