共查询到20条相似文献,搜索用时 93 毫秒
2.
3.
4.
深度学习在室内人员检测领域应用广泛,但是传统的卷积神经网络复杂度大且需要高算力GPU的支持,很难实现在嵌入式设备上的部署。针对上述问题,该文提出一种基于改进YOLOv4-tiny的轻量化室内人员目标检测算法。首先,设计一种改进的Ghost卷积特征提取模块,有效减少了模型的复杂度;同时,该文通过采用带有通道混洗机制的深度可分离卷积进一步减少网络参数;其次,该文构建了一种多尺度空洞卷积模块以获得更多具有判别性的特征信息,并结合改进的空洞空间金字塔池化结构和具有位置信息的注意力机制进行有效的特征融合,在提升准确率的同时提高推理速度。在多个数据集和多种硬件平台上的实验表明,该文算法在精度、速度、模型参数和体积等方面优于原YOLOv4-tiny网络,更适合部署于资源有限的嵌入式设备。 相似文献
5.
交通监控视频的车辆目标检测是智能交通监控系统中至关重要的组成部分,是车辆计数、事故检测等一系列操作的基础.针对YOLOv3 tiny网络存在的漏检、重复检测、误检等问题,通过增加网络中的卷积层个数,并将空间金字塔池化(spatial pyramid pooling,SPP)网络加入YOLOv3-tiny的特征提取网络之... 相似文献
6.
针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的问题,提出一种优化特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高的分辨率特征,并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小目标漏检和检测效果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验,结果表明,本文算法平均准确率(mean average precision,mAP)为86.55%,相比原算法提高了2.52%,较YOLOv3、RetinaNet提高了6.58%、14.09%,验证了所改进算法的有效性。 相似文献
7.
针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-YOLOv8特征金字塔网络结构改进YOLOv8的颈部,增强了模型多尺度特征融合能力,改善网络对小目标的检测精度。使用WIoU Loss优化原网络损失函数,引入一种动态非单调聚焦机制,提高模型的泛化能力。在无人机航拍数据集VisDrone2019上的实验表明,提出算法的mAP50为40.7%,较YOLOv8s提升了1.5%,参数量降低了42%,同时相比于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。 相似文献
8.
针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。 相似文献
9.
针对无人机航拍时拍摄的对象大小不一、种类繁杂且容易被建筑遮挡等问题,提出了一种基于YOLOv5s的无人机目标检测改进算法VA-YOLO。在已有的主干网络中添加CA注意力机制模块,扩大检测区域,获得更准确的位置信息;针对检测小目标时尺度不一导致语义丢失的问题,添加小目标检测层与BiFPN结构,加深浅层语义与深层语义结合,以此丰富对检测目标的语义信息;使用损失函数Varifocal loss与EIoU,改善模型对小目标检测的准确性。实验结果表明,在VisDrone2019-DET数据集上,该算法的平均检测精度(mean Average Precision, mAP)达到了39.01%,相比YOLOv5s提高了6.26%。 相似文献
10.
针对YOLOv4目标检测算法在一些应用场景的参数多、网络复杂、精度低等问题,提出一种改进的轻量级的目标检测算法GD-YOLO.首先,通过使用轻量级网络GhostNet替换掉YOLOv4的主干特征提取网络CSPDarknet,GhostNet网络极大降低了算法的参数量及计算量,使得算法更加轻量化;其次,提出双重注意力机制(DATM),其不仅增强模型对空间和通道上的特征进行加强,而且其结构参数量小,使用在对主干网络提取出来的三个有效特征层添加双重注意力机制,让模型对特征提取更加有效;最后,新增ACON激活函数代替原有的GhostNet网络中的ReLU激活函数,进一步提高算法检测精度.在VOC2007+2012数据集上的实验结果表明,GD-YOLO算法的平均准确率(mAP)达到84.28%,与YOLOv4算法相比提升了4个百分点,与YOLOv5算法相比低了大约1个百分点;从模型参数量方面,与YOLOv4算法相比减少了11 M,与YOLOv5相比减少3 M.所提GD-YOLO算法相对于YOLOv4不仅减少了模型参数量,而且也保存了较高的平均准确率,表明该算法是更具有轻量化及高准确率的. 相似文献
11.
基于深度学习的检测算法可实现对遥感图像中舰船目标的精确检测,但该类算法通常将舰船视为一体目标,未对其做进一步的精细化检测。大部分检测算法网络结构复杂、计算量大,难以部署在计算资源有限的小型设备上,应用范围受到限制。针对以上问题,对YOLOv4-tiny进行改进,提出了一种轻量化的舰船关重部位实时检测算法。通过优化网络结构,提高网络对目标的感知能力。借助空间注意力(Spatial Attention, SA)模型的思想增强区域显著性,以降低误检概率。构建特征提取模块进一步提高网络的表征能力。构建了舰船关重部位数据集——RS-Ship,以验证所提网络的有效性。利用平均精度、每秒处理帧数、PR曲线以及可视化结果对实验结果进行综合评估,在RS-Ship数据集上的实验结果表明,所提算法对关重部位检测的平均精度达到了71.88%,相比于YOLOv4-tiny提高了17.12%,与其他算法相比也具有较强的竞争力;所提算法每秒可以处理47.78帧图像,远超过30帧/秒的处理速度,达到了实时性的要求;通过对比不同算法的可视化结果可以发现,所提算法受背景影响较小,误检概率低。 相似文献
12.
随着人机交互的发展,手势识别越来越重要。同时,移动端应用发展迅速,将人机交互技术在移动端实现是一个发展趋势。该文提出一种改进YOLOv4-tiny的手势识别算法。首先,在YOLOv4-tiny网络基础上,添加空间金字塔池化(SPP)模块,融合了图像的局部和全局特征,增强网络的准确定位能力。其次,在YOLOv4-tiny原网络的3个最大池化层和新增SPP模块后各添加一个1×1的卷积模块,减少了网络的参数,提高网络的预测速度。在此基础上,利用K-means++算法生成适合检测手势的先验框,加快网络检测手势。在手势数据集NUS-II上,与YOLOv3-tiny算法和YOLOv4-tiny算法进行对比,改进算法平均精度均值(mAP)为100%,每秒传输帧数(fps)为377,可以快速准确地检测识别手势。将该文改进算法部署在安卓(Android)移动端,实现了移动端实时的手势检测与识别,对人机交互的发展有很大的研究意义。 相似文献
13.
随着人机交互的发展,手势识别越来越重要.同时,移动端应用发展迅速,将人机交互技术在移动端实现是一个发展趋势.该文提出一种改进YOLOv4-tiny的手势识别算法.首先,在YOLOv4-tiny网络基础上,添加空间金字塔池化(SPP)模块,融合了图像的局部和全局特征,增强网络的准确定位能力.其次,在YOLOv4-tiny原网络的3个最大池化层和新增SPP模块后各添加一个1×1的卷积模块,减少了网络的参数,提高网络的预测速度.在此基础上,利用K-means++算法生成适合检测手势的先验框,加快网络检测手势.在手势数据集NUS-II上,与YOLOv3-tiny算法和YOLOv4-tiny算法进行对比,改进算法平均精度均值(mAP)为100%,每秒传输帧数(fps)为377,可以快速准确地检测识别手势.将该文改进算法部署在安卓(Android)移动端,实现了移动端实时的手势检测与识别,对人机交互的发展有很大的研究意义. 相似文献
14.
使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。 相似文献
15.
针对航拍图像中对于小尺度的飞机目标出现漏检、错检的问题,在SSD(Single Shot MultiBox Detector)模型的基础上提出了一种改进SSD的航拍图像目标检测模型。首先,针对SSD模型中浅层特征图中缺乏语义、细节信息的问题,设计了一种特征融合机制,通过添加细节信息补充特征层和添加由递归反向路径获得的语义信息补充特征层来丰富浅层特征图的语义、细节信息。然后,针对SSD模型对通道以及空间信息的关注能力不足的问题,引入了结合通道和空间的混合注意力模块来提高模型整体的关注能力。最后,针对SSD模型中先验框与小尺度目标不匹配的问题,对先验框的比例进行了调整。使用自制的航拍图像数据集进行验证,结果表明改进后的模型检测精度为95.7%,相较于原模型提高了7.5%,检测速度达到30.8 FPS。 相似文献
16.
针对大型行人检测网络由于权重大、检测速度慢等原因无法直接应用到小型设备场景中的问题,提出3种改进YOLOv4?tiny的行人检测识别模型:①YOLOv4?tinye模型,在CSP(Cross Stage Partial Connections)网络中引入改进的ESA_CSP(Enhanced Spatial Atten... 相似文献
17.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。 相似文献
18.
针对自动驾驶车辆真实行驶场景下因环境复杂,车辆间目标遮挡、环境背景遮挡等导致的车辆检测误检、漏检和定位不准的问题,本文提出了一个改进YOLOv4模型的车辆检测算法。该算法在YOLOv4网络的Backbone与Neck的通道处以及Neck的上采样与下采样处分别添加7处CBAM注意力机制,以提升网络提取有效特征的能力。并利用k-means聚类算法生成适合数据集的锚框。为检验模型的有效性,对数据集进行重新整理与划分,将与车辆无关的种类删去,将Car、Bus、Truck三类合并为Vehicle一类,随后进行实验,并与当前主流的其他目标检测模型进行对比。实验证明,改进的YOLOv4算法比原算法AP提升了4.8%,准确率提升了4.54%,召回率提高了0.9%,优于大部分主流算法。提出的模型为复杂环境下自动驾驶领域的车辆识别提供了有效方法。 相似文献
19.
针对目标检测算法YOLOv3检测精度低、目标识别效果差等问题,从特征提取和特征融合的角度提出一种改进的YOLOv3目标检测算法。采取连续残差结构和深度卷积双路特征提取来扩展感受野,在深度卷积模块中以改进的混合池化来替换最大池化;在特征融合方面,引入CBAM,并在增强残差模块中增加了注意力特征融合模块。实验结果表明,改良后的YOLOv3算法在百度与北京林业大学合作的Insects昆虫数据集上的检测精度达到了71.22%,比原始算法的检测精度提升4.88个百分点,验证了该算法的有效性。 相似文献