首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在60kg顶底复吹转炉上进行了底吹CO2、N2、CO2+N2、CO2+Ar4种气体的实验,通过比较不同底吹气体的实验结果,对复吹转炉底吹不同性质气体的冶金特性进行了研究。主要讨论了底吹不同性质气体对熔池氧化性、脱碳反应和钢中氮的行为等的影响。  相似文献   

2.
陈固军  杨江  李龙  张敏  何生平 《钢铁》2022,57(3):55-60
 钢铁生产过程CO2的资源化利用对中国“碳达峰,碳中和”目标的实现起着重要作用。氩气驱动的RH(ruhrstahl-heraeus)真空装置是超低碳钢精炼的关键设备,利用高真空下钢水循环流动可有效脱碳、脱气和去除夹杂物。由于真空条件下CO2可直接与钢水中碳反应生成CO,在实现脱碳的同时可促进熔池搅拌。因此,尝试将Ar-CO2混合气体作为提升气体引入超低碳钢RH脱碳过程。首先,针对CO2在RH脱碳条件下的冶金反应行为,通过热力学理论分析了不同压力下Fe-C-O熔体与Ar-CO2的反应特性。其次,搭建了Ar-CO2混合气体作为RH提升气体的工业试验平台,通过工业性试验研究了超低碳钢RH脱碳过程混合喷吹Ar-CO2对钢水脱碳、脱氮和温降的影响。Fe-C-O熔体与Ar-CO2反应热力学表明,在低于100 kPa和超低碳条件下,Ar-CO2混合气体中的CO2仍可能与钢水中碳反应,从而促进RH脱碳和脱气。工业性试验表明,喷吹100% CO2、50% Ar+50% CO2和100% Ar炉次出站平均碳质量分数分别为0.001 50%、0.001 57%和0.001 19%,因而混合喷吹Ar-CO2并不会显著影响RH脱碳效率。同时,由于CO2与钢水中碳反应十分有限,与喷吹100% Ar相比,喷吹100% CO2和50% Ar+50% CO2对RH脱氮效率和钢水温降没有明显影响。因此,超低碳钢RH脱碳时,完全可采用CO2取代部分或全部氩气作为提升气体,尽管无法提高精炼效率,但仍具有显著的经济价值和环保优势。  相似文献   

3.
研究了不同底吹强度对转炉终点w[C]w[O]积、炉渣w(TFe)、钢铁料消耗的影响关系,通过提高转炉底吹强度、改善熔池搅拌促进碳氧反应平衡、降低转炉终点碳氧积的效果,实现降低过钢钢水总氧、炉渣中w(TFe)、钢铁料目标。结果表明,转炉底吹强度由0.037 m3/(t·min)提高到0.06 m3/(t·min)后,实际生产过程中,转炉终点w(O)由713×10-6降低到456×10-6,转炉终点碳氧积由0.29×10-6下降到0.26×10-6,转炉渣中w(TFe)由27.21%降低到16.58%,钢铁料消耗降低1.78 kg/t。  相似文献   

4.
为探索LF炉底吹CO2气体的冶金行为,将CO2气体用于LF炉精炼过程中,对LF炉底吹CO2气体工艺进行热力学分析,并利用75 t LF炉进行底吹不同比例CO2与Ar混合气体的实验.研究发现:底吹CO2气体精炼过程中不会造成钢液大量脱碳,平均每炉碳氧化量在0.3 ~ 0.8 kg,钢液中夹杂物的种类、形貌和组成变化较小,夹杂物当量密度减小,提高了钢液洁净度,底吹CO2气体不会加重钢包透气砖的侵蚀,实验表明LF炉可使用CO2气体进行精炼.  相似文献   

5.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

6.
魏哲 《山西冶金》2022,(1):27-29
针对转炉透气砖供气强度小,炉役后期溅渣护炉易堵塞的情况,结合某钢厂实际情况,开发了一种新型的“中心管+环管”底吹供气元件,通过设计计算确定“中心管”内径7 mm,“环管”缝隙1 mm,确定了合理的底吹布置结构;通过试验研究确定180 t转炉合理的底吹元件为6个,选取炉底0.4 D~0.6 D范围内不同位置布置,满足了转炉大流量底吹要求,底吹强度由0.03 m3/(min·t)提高到0.17 m3/(min·t),大幅提高了熔池钢水搅拌强度,碳氧积小于0.002 0,有效地促进炼钢碳氧反应的进行。该研究为复吹转炉生产高质量钢种的冶金工艺提供了重要参考依据。  相似文献   

7.
李层  李欣  魏光升  朱荣  李挺  孟令辉 《炼钢》2023,(6):1-7+22
为降低全废钢量子电弧炉出钢氮含量、优化电弧炉冶炼性能、减少电弧炉冶炼碳排放量,通过对量子电弧炉喷吹工艺进行优化改进,采用CO2喷吹工艺替代原始喷吹工艺以实现上述目标。在150 t量子电弧炉上进行了大量CO2喷吹工艺试验,分别对比了改进工艺前后的电弧炉出钢氮含量、冶炼电耗、冶炼周期、碳排放等性能指标的变化趋势。试验结果表明:使用CO2喷吹工艺后,电弧炉出钢氮质量分数降低30.6×10-6、冶炼电耗降低5.6 kWh/t、冶炼周期缩短3.2 min、平均出钢碳氧积降低了4.4×10-4、渣中FeO质量分数降低了4.5百分点、碳排放降低8.4%。通过将CO2载气喷吹碳粉工艺与Ar+CO2动态混合底吹工艺结合应用于电弧炉炼钢中能够有效降低钢水出钢氮含量、冶炼电耗、碳排放量等性能指标,优化量子电弧炉喷吹工艺。  相似文献   

8.
安杰  赵越  李忠伟  魏仁杰 《特殊钢》2015,36(6):10-12
依据30 t VOD生产数据,在初始[C]0.50%~0.60%,初始[Si]0.12%~0.20%,初始钢水温度1 640~1 650℃,氩和氮气压分别为0.8×106~1.0×106 Pa和1.5×106~1.6×106Pa的条件下,对比底吹氩气和底吹氮气两种工艺在入VOD初始、吹氧脱碳以及还原脱气后的不锈钢(0.04%~0.06%N)中氮含量。结果表明,VOD底吹氮气精炼后Cr13型和Cr17型两类不锈钢的钢液氮含量为260×10-6和300×10-6,其氮合金化效果显著;常压下氮气搅拌Cr13型和Cr17型不锈钢钢液的平均增氮速率为40×10-6/min和45×10-6/min;钢液温度升高,增氮速率增加,通过降低VOD精炼不锈钢的钢液氧含量,能够提高底吹氮气的氮合金化效果。  相似文献   

9.
范新智  张剑桥 《特殊钢》2009,30(6):32-33
00Cr12Ti超低碳铁素体不锈钢(%:≤0.030C、10.50~11.75Cr、6×C~0.75Ti)由90 t K-OBM-S转炉-90 t VOD-90 t LF-CC工艺冶炼。生产实践表明,随钢中自由氧含量(5~10)×10-6和吹氩搅拌时间(1~12 min)增加,钛的收得率降低;LF喂钛线时钛的收得率高于VOD过程加块状钛合金;控制钢中全氧含量≤35×10-6,自由氧含量≤6×10-6,VOD过程(Cr2O3+FeO+MnO)≤1%,搅拌时间5~10 min,氩气流量50~80 L/min,用LF喂钛线工艺,可使钛的收得率达60%~75%。  相似文献   

10.
为寻求CO2在转炉流程内的规模化利用途径,减少CO2排放量,通过工业实验和理论分析对转炉底吹CO2工艺开展了创新性技术研究。本文对CO2吸附深度稳定脱氮技术以及CO2底吹高强度搅拌技术的机理进行了深入研究,并通过热态实验加以验证。同时根据此次研究成果,制定了转炉炼钢动态调节底吹CO2流量的工艺,实现了转炉出钢终点氮含量的稳定控制,提高了宣钢150t转炉冶炼脱磷效率和控氧效果,取得了良好的经济效益和社会效益。  相似文献   

11.
为了实现转炉绿色洁净化生产并满足高废钢比冶炼的需求,具有高效、洁净、低碳等冶金优势的底吹O2-石灰粉技术成为了研究热点。总结了转炉底吹O2-石灰粉技术的发展历程和应用现状,该技术在应用中呈现出控制系统高度集成、冶金指标优异,成本低等优势,但存在炉底寿命短、生产成本优势有限、应用规模不高的问题。3种代表性技术为顶底复合吹炼转炉炼钢法(K-BOP法)、顶底复吹转炉底喷石灰粉法(K-OBM法)和转炉底吹O2-CO2-石灰粉技术。K-BOP法和K-OBM法均采用活动式炉底,炉底安装多支环缝式底吹元件将O2和石灰粉喷入炉内,环缝采用气态碳氢化合物作为冷却气。K-OBM法还实现了从装料到溅渣过程的全自动冶炼,可100%不倒炉出钢,具有高质量、高效率、一致性和低成本的特点。北京科技大学自主研发的转炉底吹O2-CO2-石灰粉技术采用全自动冶炼,将CO2混入底吹O2中利用其与钢液元素反应的吸热效应、弱氧化性、...  相似文献   

12.
研究了300t顶底复吹转炉1:10几何相似比的水模型顶枪枪位(150~230mm)和流量(44~48m3/h)对钢液混匀时间的影响。模拟结果得出,最佳枪位为170mm,最佳流量为45m3/h。钢厂300t顶底复吹转炉应用结果表明,顶吹流量60000m3/h和底吹流量1000m3/h时,当顶枪枪位由1900mm改进为1700mm时,碳氧积平均值由原来的27.94降为23.49,提高了转炉内熔池的搅拌效果,吹炼时间由原15.8min降低至15.5min,降低了生产成本。  相似文献   

13.
周赟  魏光升  朱荣  董凯 《钢铁》2023,58(1):39-46
 近年来,CO2在钢铁行业的资源化利用技术被广为开发,研究表明CO2在不锈钢冶炼中的应用颇具潜力。通过建立底吹CO2气泡反应动力学模型并结合水力学模拟试验研究,量化研究不锈钢冶炼条件下底吹CO2对熔池动力学条件的影响。由于CO2脱碳导致气体体积增加会造成气泡膨胀或分裂的情况不明确,假设两种极端条件,即条件a,CO2反应气泡体积增大后只膨胀不分裂;条件b,CO2反应气泡体积增大后只分裂不膨胀,并取某厂70 t不锈钢炉冶炼中期工艺参数对两种条件下CO2气泡反应动力学进行计算。结果表明在本研究条件下,不锈钢冶炼底吹CO2反应后气体增加无论是导致气泡膨胀或者分裂,反应平衡时气泡最终体积约为初始体积的1.3倍,并且气泡体积随反应时间的变化呈线性关系。水力学模拟研究发现,相对于对照组试验,条件a和条件b下熔池的混匀时间分别缩短16.5 s和8.4 s,因此得出实际底吹CO2在反应后会使熔池混匀时间缩短8.4~16.5 s,使熔池的动力学条件得到显著改善。此外,通过墨水示踪剂观察底吹CO2对熔池流场变化的影响,发现底吹CO2反应后导致气泡膨胀会促进熔池的溶质向横向扩散,相对抑制溶质在纵向的扩散速度;相反地,CO2反应后导致气泡分裂会促进熔池的溶质向纵向扩散,相对抑制溶质在横向的扩散速度。  相似文献   

14.
冯永磊 《山西冶金》2022,(3):237-239
宣钢为响应国家CO2减排号召,在现有设备基础上进行转炉底吹CO2技术改造。改造后,炼钢作业区实现全钢种底吹CO2供气工艺。底吹CO2工艺应用炉次,各钢种钢铁料消耗明显降低,转炉脱磷效率进一步提高,另外煤气回收量有所增加,炉渣氧化性显著降低,从而优化了溅渣效果,提高了转炉工作效率。  相似文献   

15.
通过实验室建立的小型实验炉,进行集束射流加热金属冷料的热态模拟实验,分析了集束射流火焰在不同冶炼阶段的成分变化.实验研究表明:集束射流火焰形态呈现多样性特点,燃烧产物成分不断变化.在金属冷料的存在作用下,少量CO2气体产生,O2增加,CO下降;熔化期中,O2逐渐升高,CO逐渐降低,CO2体积分数一直保持在1%~2%;脱碳期与熔化期相比,O2下降,而CO上升,CO2稍有增加;脱碳期中,钢水中C含量逐渐降低,CO2和O2有所增加,而CO含量剧烈降低.集束射流火焰燃烧产物中,各成分之间关系密切,CO的含量随着O2含量的升高而降低.在熔化期中,CO气体含量随着CO2气体含量的增加而增加;在脱碳期,CO气体含量随着CO2气体含量的增加而降低.  相似文献   

16.
邢梅峦  包燕平  林路 《特殊钢》2015,36(2):25-27
0.79%~0.86% C  SWRH82B高碳钢的生产流程为130 t顶底复吹转炉-LF-8流150 mm×150 mm坯连铸工艺。通过转炉吹炼时采用较高泡沫渣高度,终点枪位较其他钢种高100~150 mm,转炉全程底吹氩0.02~0.05 m3/(t·min),圆流出钢,LF精炼时快速成渣,合适的吹氩量20~30 m3/h,连铸全程保护等工艺措施,有效控制钢中氮含量,205炉氮含量分析表明,钢中氮含量为13.7×10-6~37.4×10-6,平均氮含量为23.3×10-6  相似文献   

17.
针对位于海拔1 500 m左右的国内某厂RH真空脱碳过程中脱碳效果不佳喷溅严重的生产问题,借鉴转炉吹氧过程氧气射流与熔池相互作用规律,考虑到RH真空室内液面高度偏低的特点,通过水模型试验研究不同氧枪流量和枪位下氧气射流与熔池相互作用规律,并结合理论分析对RH真空吹氧脱碳工艺进行优化。水模型试验结果表明:RH真空吹氧脱碳过程中氧气射流与熔池的相互作用规律与转炉冶炼相似,可采用转炉冶炼过程中氧气射流与熔池相互作用研究对RH真空吹氧脱碳工艺进行优化。理论分析可知,当氧枪流量为1 500 m3/h、枪位为5.5 m时,熔池冲击深度为0.173 m、冲击面积为2.435 m2、穿透体积处于最大值为0.420 m3,氧气射流冲击熔池效果最理想,有利于RH脱碳过程高效脱碳和喷溅控制。实施优化措施后,终点钢水平均w(C)由15.1×10-6降至11.8×10-6,终点w(C)在20×10-6以内比例提高至94.4%,优化工艺显著提高了RH快速深脱碳效果,同时有效控制了RH...  相似文献   

18.
针对钢厂铁水硅和磷含量较高的特点,采用转炉留渣双渣冶炼工艺以获得稳定的铁水脱磷率。吹炼3 min后加入石灰和污泥球等造渣材料,供氧强度0~3 min时为2.5m3/(t·min),3~4.5 min时为3.2m3/(t·min),温度控制在约1320℃。转炉一次倒渣后,继续吹炼,加入后期造渣料,待一氧化碳体积分数稳定时,适当提高氧枪枪位,促进化渣,并进行终点碳控制。试验结果表明:脱磷期铁水平均脱磷率为58.09%,脱碳期钢水平均脱磷率为85.56%;当半钢温度为1320℃炉渣碱度为2.0,炉渣TFe含量为18%时,在脱磷期能获得较好的铁水脱磷效果;当转炉钢水一倒温度为1580℃,终渣碱度为3.5,炉渣TFe含量为20%时,在脱碳期能够获得较好的脱磷效果;转炉终点[P]e/[P]r为0.90;试验中得到脱磷期和脱碳期炉渣的岩相组成适合铁水脱磷。  相似文献   

19.
通过采用冶金反应的热力学分析、热平衡计算及热态实验,研究了CO2与O2混合喷吹炼钢工艺.对喷吹过程中金属熔体内的脱碳过程,铁液、炉渣及炉气成分及温度的变化进行了测试及分析.初步分析了CO2与O2混合喷吹炼钢工艺的可行性.根据热平衡计算可以得出,在炼钢过程中喷入一定浓度CO2气体后,同样可脱除钢中的碳,达到冶炼目的.实验证实,在真空电感应炉炼钢过程中,由于电能热量的补充,使得能满足炼钢过程的热量要求,喷入CO2与O2混合气体可以脱除钢中的碳.  相似文献   

20.
包丽明  吕国成  刘坤 《特殊钢》2015,36(4):9-12
根据180 t转炉的实际生产情况,以修正的Froude准数为相似准数,建立几何相似比10 : 1水模型,进 行了四孔对称单纯底吹试验,并在最佳的底吹工艺参数下(底吹最佳位置为喷嘴所在同心圆直径:转炉熔池直径= 0. 3处;最佳流量为0. 7 m3/h,均混时间18. 2 s),通过改变顶吹氧枪的气体流量和吹炼枪位进行了顶底复吹转炉射 流与熔池作用的试验。结果表明,在底吹条件下,增加顶吹工艺(最佳枪位150 mm,最佳流量39 m3/h),熔池平均 的均混时间减少了 5.6 s, 180 t转炉顶底复吹可显著提高经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号