首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new differential delay cell with complementary current control to extend the control voltage range as well as the operation frequency is proposed for low voltage and wide tuning range voltage-controlled ring oscillator (VCRO). The complementary current control can get rid of the restriction that control voltage is unable to cover the full range of power supply voltage in a conventional VCRO. A three-stage VCRO chip working with 1 V power supply voltage is constructed using 0.18 μm 1P6M CMOS process for verifying the efficacy of the proposed differential delay cell. Measured results of the VCRO chip show that a wide range of operation frequency from 4.09 GHz to 479 MHz, a tuning range of 88%, is achieved for the full range of control voltage from 0 to 1 V. The power consumptions of the chip are 13 and 4 mW for oscillation outputs of 4.09 GHz and 479 MHz, respectively. The measured phase noise is −93.3 dBc/Hz at 1 MHz offset from 4.09 GHz center frequency. The core area of the chip is 106 μm×76.2 μm.  相似文献   

2.
A 900-MHz two-stage CMOS voltage controlled ring oscillator (VCRO) with quadrature output is presented. The circuit is designed in a 0.18-um CMOS technology and operated on a 1.8-V supply voltage. The VCRO have a tuning range of 730 MHz to 1.43 GHz and good tuning linearity. Between 0 V and 1.1 V of control voltage, the gain of VCRO is around −620 MHz/V. At 900 MHz, the phase noise of the VCRO is −106.1 dBc/Hz at 600-KHz frequency offset with power consumption of 65.5 mW.  相似文献   

3.
This letter proposes a new voltage controlled oscillator (VCO) topology that cancels common-mode noise by adoption of differential tuning varactor. To suppress common mode noise effectively, a symmetric three-coil transformer is proposed as a differential tuning resonator. The measured phase noise shows -128.7 dBc/Hz at 1 MHz offset frequency from the 1.2 GHz oscillation frequency. Over the whole frequency range, common-mode noise rejection is larger than 36 dB. Measured tuning range of the proposed VCO is about 204 MHz from the 1.18 GHz to 1.38 GHz while dissipating 1.2 mA at 1.8 V power supply.  相似文献   

4.
This letter proposes a new wide band CMOS injection locked frequency divider (ILFD). The circuit is made of a two-stage differential CMOS ring oscillator and is based on MOS switches directly coupled to the differential outputs of the ring oscillator. A tuning circuit composed of inductors in series with a metal oxide semiconductor field effect transistor is used to extend the locking range. The divide-by-two ILFD can provide wide locking range and the measured results show that at the supply voltage of 1.8 V, the free-running frequency of the ILFD is operating from 0.92 to 3.6 GHz while the Vtune is tuned from 0 to 1.8 V. At the incident power of 0 dBm, this ILFD has a wide locking range from 1.15 to 7.4 GHz  相似文献   

5.
A voltage controlled delay cell with wide frequency range is presented in this paper. The delay-line which is resulted by connecting five series of delay cells generating a wide range of delay from 1.9 to 13.24 ns. It can be used in an analog delay locked loop. The linear characteristic of the circuit with respect to the conventional delay line structures is improved, and a better performance of noise is obtained using differential structure. This circuit is designed by ADS software and TSMC CMOS 0.18 μm technology, with supply voltage 1.8 V. By changing control voltage from 0.335 to 1.8 V in delay line, a wide range of frequency from 75.52 to 917.43 MHz will be covered. Simulation results show that the proposed delay line has power consumption of maximum 3.77 mW at frequency of 75.52 MHz. It also shows that increasing of frequency will reduce power dissipation which is the one of the main characteristics of this novel circuit. Moreover, the delay locked loop which uses these delay cells has a very high lock speed so that the maximum lock time in just five clock cycles.  相似文献   

6.
This letter proposes a wideband injection-locked frequency divider (ILFD) and describes the operation principle of the ILFD. The circuit is made of a differential CMOS LC-tank oscillator and is based on the direct injection topology. The wideband function is obtained by tuning the switch across the tank inductors. The divide-by-two ILFD can provide wide locking range and the measurement results show that at the supply voltage of 1.8 V, the dual-band divider free-running frequencies are from 1.77 to 2.17 GHz for the low-band mode, and from 2.59 to 3.2 GHz for the high-band mode. At the incident power of 0 dBm, the locking range is about 1.7 GHz from the incident frequency 3.31 to 5.01 GHz at low band and 4.06 GHz from 3.94 to 8.0 GHz at high-band mode. The circuit can be used as a single wideband ILFD.  相似文献   

7.
This letter proposes a new wideband Colpitts injection locked frequency divider (ILFD) and describes the operation principle of the ILFD. The circuit consists of a differential CMOS LC-tank oscillator and a direct injection topology. The divide-by-two ILFD can provide wide locking range, and the measurement results show that at the supply voltage of 2.4 V, the tuning range of the free running ILFD is from 4.46 to 5.6 GHz, about 1.14 GHz, and the locking range of the ILFD is from 8.03 to 11.63 GHz, about 3.6 GHz, at the injection signal power of 0 dBm. The ILFD dissipates 19.92 mW at a supply voltage of 2.4 V and was fabricated in 1P6M 0.18 mum CMOS process. At the tuning voltage of 1.2 V, the measured phase noise of the free running ILFD is -110.8 dBc/Hz at 1 MHz offset frequency from 4.94 GHz and the phase noise of the locked ILFD is -135.4 dBc/Hz, while the input signal power is -4 dBm.  相似文献   

8.
A new injection-locked frequency divider (ILFD) using a standard 0.18 $mu$m CMOS process is presented. The ILFD is based on a differential Colpitts voltage controlled oscillator (VCO) with a direct injection MOSFET for coupling an external signal to the resonators. The VCO is composed of two single-ended VCOs coupled with two transformers. Measurement results show that at the supply voltage of 1.4 V the divider's free-running frequency is tunable from 4.77 to 5.08 GHz, and the proposed circuit can function as a first harmonic injection-locked oscillator, divide-by-2, -3, and -4 frequency divider. At the incident power of 0 dBm the divide-by-2 operation range is from the incident frequency 7.7 to 11.5 GHz and the divide-by-4 operation range is from the incident frequency 18.9 to 20.2 GHz.   相似文献   

9.
This paper presents a new design for a three-stage voltage-controlled differential ring oscillator embedded with a delay cell for a wide tuning range from 59 MHz to 2.96 GHz by adjusting the current level in the delay cell. The ring oscillator consists of a voltage-to-current converter, coder circuit, three-stage ring with delay cells, and current monitoring circuit to extend the tuning range of the proposed voltage-controlled oscillator. Each functional block has been designed for a minimum power consumption using the TSMC 0.18 μm CMOS technology. We simulate the performances of the proposed voltage-controlled oscillator in terms of phase noise, power consumption, tuning range, and gain. Our simulation results show that the proposed oscillator has the linear frequency–voltage characteristics over a wide tuning range. At each tuning range (mode), the calculated phase noise of the proposed ring oscillator at each tuning range (mode) was −87, −85, −81, and −79 dBc/Hz at a 1 MHz offset from the center frequency. The DC power of the proposed voltage-controlled oscillator consumed 0.86–3 mW under a 1.8 V supply voltage.  相似文献   

10.
This letter proposes a wide locking range and low power complementary Colpitts injection-locked frequency divider (ILFD) employing a 3-D helical transformer. The proposed ILFD consists of two single-ended complementary Colpitts oscillators coupled by a 3-D transformer to form a differential oscillator. The aim of using the 3-D transformer is to reduce chip size. The divide-by-2 LC-tank ILFD is implemented by adding an injection nMOS between the differential outputs of the voltage controlled oscillator. The measurement results show that at the supply voltage of 1.8 V, the divider free-running frequency is tunable from 4.24 to 4.8 GHz. At the incident power of 0 dBm, vtune=0.9 V, and V DD=1.5 V, the locking range is about 2.4 GHz (26.9%), from the incident frequency 7.7 to 10.1 GHz. The core power consumption is 3.9 mW. The die area is 0.548times 0.656 mm2.  相似文献   

11.
A 1.1-GHz voltage control oscillator (VCO) using a standard 0.18-mum CMOS 1P6M process is fabricated. The VCO was designed with dynamic threshold voltage metal-oxide-semiconductor field-effect transistors and extremely-low-voltage and low power operation is achieved using on-chip transformers in positive feedback loops to swing the output signals above the supply and below the ground potential. This dual-swing capability maximizes the carrier power and achieves low-voltage performance. This VCO prototype is designed for a 0.34-V supply voltage while the output phase noise is -121.2dBc/Hz at 1-MHz offset frequency at the carrier frequency of 1.14GHz, the figure of merit is -192.0dB. The total power consumption is 103.7muW with the 0.34-V supply voltage. Tuning range is from 1.06 to 1.14GHz about 80MHz while the control voltage was tuned from 0 to 1.8V. The die area is 0.625times0.79mm2  相似文献   

12.
In millimeter wave systems, performance degradation mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for ultra-wide band applications identified for possible 5G usage. For this purpose, a novel differential symmetrical load delay cell based 3-stage ring oscillator has been introduced to design the ring-VCO. The 28 nm CMOS Fully Depleted Silicon On Insulator (FDSOI) technology is adopted for designing this VCO circuit with 1 V power supply while a new voltage control through the transistor body bias is implemented. The simulated results show that the proposed oscillator works in the tuning range of 29–49 GHz and dissipates 3.75 mW of power. It exhibits a phase noise of −129.2 dBc/Hz at 1 MHz offset from 49 GHz oscillation frequency, and a remarkable Figure of Merit (FoM) of −217.26 dBc/Hz. With similar power supply, the phase noise rises to −93.16 dBc/Hz for a second oscillator involving more of active components exactly 9 delay cells. Further, the impact of the operation temperature variation on the VCO performance is investigated. Results show a drift in the oscillation frequency for a temperature step from 27 °C to 40 °C and a degradation of 3dBc in the phase noise performance.  相似文献   

13.
The design of a high-speed wide-band high resolution programmable frequency divider is investigated. A new reloadable D flip-flop for the high speed programmable frequency divider is proposed. It is optimized in terms of propagation delay and power consumption as compared with the existing designs. Measurement results show that an all-stage programmable counter implemented with this D flip-flop using the Chartered 0.18 /spl mu/m CMOS process is capable of operating up to 1.8 GHz for a 1.8 V supply voltage and a 5.8-mW power consumption. By using this counter, an ultra-wide range high resolution frequency divider is achieved with low power consumption for 5-6-GHz wireless LAN applications.  相似文献   

14.
This letter describes circuit techniques for obtaining divide-by-four (divide4) frequency dividers (FDs) from CMOS ring-oscillator based injection locked frequency dividers (ILFDs). The circuit is made of a two-stage differential CMOS ring oscillator and is based on MOS switches directly coupled to the differential outputs of the ring oscillator. At the supply voltage of 1.8V and at the incident power of 0dBm, for a dual-band ILFD, the divide4 ILFD can provide a locking range of 6.3% from 5.39 to 6.12GHz at low band and 5.9% from 8.84 to 9.38GHz at high band when the dc bias of MOS switches Vinj changes from 0.7 to 1.1V  相似文献   

15.
This letter proposes a wide locking range injection locked frequency divider (ILFD) and describes the operation principle of the ILFD. The circuit is made of a dual band two-stage differential complementery metal–oxide–semiconductor (CMOS) ring oscillator and is based on MOS switches directly coupled to the differential outputs of the ring oscillator. The divide-by-two ILFD can provide wide locking range and the measurement results show that at the supply voltage of 1.8-V, the divider free-running frequencies are 1.36GHz and 2.3GHz, and at the incident power of 0dBm, the locking range is about 1.75GHz from the incident frequency 1.9GHz to 3.65GHz at low band and 2.55GHz from 2.95GHz to 5.5GHz at high band.  相似文献   

16.
A 5-GHz CMOS voltage-controlled oscillator (VCO) integrated with a micromachined switchable differential inductor is reported in a 0.18 mum radio frequency-CMOS-based microelectromechanical system technology. The power consumption of the core is about 8 mW at the supply voltage of 1.8 V. A total tuning range of 470 MHz (from 5.13 GHz to 5.60 GHz) is achieved as the tuning voltage ranging from 0 V to 1.8 V. In the practical tuning range, the measured phase noise performances at 1 MHz offset are less than -125 dBc/Hz and -126 dBc/Hz when the inductor switch is turned on and off, respectively. The figure-of-merit is better than -190 dB. When compared with a contrast VCO circuit that utilizes a standard switchable differential inductor, this oscillator reaches a phase noise improvement of around 3 dB as the switch is turned on. Around 1-dB on-off phase noise difference can be achievable.  相似文献   

17.
A low-voltage wide locking range injection-locked frequency divider (ILFD) using a standard 0.18?µm complementary metal-oxide-semiconductor process is presented. The ILFD is based on a differential LC VCO with one injection metal oxide semiconductor field effect transistor (MOSFET) for coupling external signals to the resonator. The low-voltage operation and wide locking range is obtained by boosting the gate voltage swing of the ILFD. Measurements show that at the supply voltage of 0.67?V, the divider's free-running frequency is tunable from 3.91 to 4.22?GHz, and the core power consumption is 1.87?mW. At the incident power of 0?dBm the divide-by-4 operation range is about 2?GHz (12.3%), from the incident frequency 15.3–17.3?GHz. The divide-by-2 locking range is about 5.1?GHz (77%), from the incident frequency 4.1–9.2?GHz.  相似文献   

18.
Jeong  D.Y. Chae  S.H. Song  W.C. Cho  G.H. 《Electronics letters》1997,33(13):1102-1103
A differential voltage clamped current mode delay cell is proposed and a three-stage differential ring oscillator is implemented. Owing to the nature of this current mode, with voltage clamping and robustness against noise, experimental results show that the supply sensitivity is very low at ~0.1-0.2%/V in the 500-800 MHz range, with its tuning range over 1 decade up to 1.38 GHz  相似文献   

19.
A current-reused quadrature voltage-controlled oscillator (CR-QVCO) is proposed with the cross-coupled transformer-feedback technology for the quadrature signal generation. This CR-QVCO has the advantages of low-voltage/low-power operation with an adequate phase noise performance. A compact differential three-port transformer, in which two half-circle secondary coils are carefully designed to optimize the effective turn ratio and the coupling factor, is newly constructed to satisfy the need of signal coupling and to save the area consumption simultaneously. The quadrature oscillator providing a center frequency of 7.128 GHz for the ultrawideband (UWB) frequency synthesizer use is demonstrated in a 0.18 mum RF CMOS technology. The oscillator core dissipates 2.2 mW from a 1 V supply and occupies an area of 0.48 mm2. A tuning range of 330 MHz (with a maximum control voltage of 1.8 V) can be achieved to stand the frequency shift caused by the process variation. The measured phase noise is -111.2 dBc/Hz at 1 MHz offset from the center frequency. The IQ phase error shown is less than 2deg. The calculated figure-of-merit (FOM) is 184.8 dB.  相似文献   

20.
刘建峰  成立  杨宁  周洋  凌新  严鸣 《半导体技术》2010,35(5):473-477
设计了一种宽带、低相位噪声差分LC压控振荡器(VCO)。所设计的电路采用开关电容阵列和开关电感,实现了多波段振荡输出。对负阻环节跨导进行了优化设计,将热噪声控制在最小范围内,同时采用高品质因数片上螺旋电感,以减小电路的噪声干扰。采用台积电(TSMC)0.35μmSiGe BiCMOS工艺制作了流片,并进行了仿真和硬件电路实验。实测结果表明,当调谐电压为0~3.3 V时,可设定VCO工作在6个波段(1.9~2.1 GHz,2.1~2.4 GHz,2.4~3.0 GHz,3.0~3.4 GHz,3.4~4.2 GHz,4.2~5.7 GHz),此6波段连续可调,构成了1.9~5.7 GHz宽带VCO;VCO的中心频率为2.4 GHz、偏离中心频率为1 MHz时实测相位噪声为-111.64 dBc/Hz;在3.3 V电源电压下实测核静态电流约为1.8 mA,从而验证了宽带、低噪声BiCMOS LC VCO设计方案之正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号