首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用每级为1.5位或者2位精度的7级流水线结构,即7级子ADC,设计了一款8位80 MS/s的低功耗模数转换电路。利用每一级子ADC中的钟控开关及电容实现采样保持功能,节省了整个ADC的采样保持电路模块。在满足整个ADC性能情况下,采用了逐级缩放技术,减小了芯片面积和功耗。版图设计中,考虑了每一级ADC中电容及放大器的对称性,减小了电容失配对整个ADC性能的影响。采用0.18 μm CMOS工艺,在输入信号为11.25 MHz,采样速率为80 MHz的条件下,信噪比(SNR)为49.5 dB,有效位数(ENOB)为7.98 bits,整个ADC的芯片面积为0.56 mm2,典型工作电流为22 mA。  相似文献   

2.
采用逐次逼近方式设计了一个12位的超低功耗模数转换电路。为减小整个ADC的芯片面积、功耗和误差,提高有效位数,对整个ADC的采样保持电路结构进行了精确的设计,重点考虑了其中的高精度比较器电路结构;对以上两个模块的版图设计进行了精细的布局。采用0.18μmCMOS工艺,该ADC的信噪比(SNR)为72dB,有效位数(ENOB)为11.7位,该ADC的芯片面积只有0.36mm2,典型的功耗仅为40μW,微分非线性误差DNL小到0.6LSB、积分非线性误差INL只有0.63LSB。整个ADC性能达到设计要求。  相似文献   

3.
1.8V 10位 50Ms/s低功耗流水线ADC的设计   总被引:1,自引:1,他引:0  
采用每级1.5位精度的流水线结构,设计了一个10位50 Ms/ s的低功耗ADC.每级流水线所用的电容按比例缩小,大大地节省了功耗.同时提出了一种提高OTA压摆率的方法,进一步降低了电路的功耗,采用TSMC0.18μm CMOS工艺进行设计,结果表明该ADC在输入频率20MHz、采样速率50MHz下,SNR为59dB,DNL和INL分别为±0.4和±0.5 LSB,ADC的功耗为47mW.  相似文献   

4.
低功耗高速流水线ADC中低回踢噪声动态比较器设计   总被引:1,自引:0,他引:1  
动态比较器是低功耗高速流水线ADC的重要模块,其回踢噪声会严重影响ADC的性能.为了满足低功耗高速流水线ADC的应用需求,设计了一种全差分结构的动态比较器,具有零静态功耗、速度快、阈值电压可调等特点.中和技术的应用可以显著降低回踢噪声.电路使用TSMC 0.18 μmCMOS工艺,在1.8 V电源电压和100 MHz工作频率下,仿真显示回踢噪声被明显抑制,减小了75.5%.  相似文献   

5.
周晓丹  刘涛  付东兵  李强  刘杰  郭刚 《微电子学》2022,52(2):295-300
设计并实现了一种抗辐射低功耗流水线型8位ADC。对流水线型结构的分辨率影响进行分析,确定了最优的级间分辨率和流水线结构。采用多种电路的结构设计,降低了电路功耗。为达到抗辐射指标,对电路进行了抗辐射加固设计。测试结果表明,在3 V电源电压、100 MHz时钟输入频率、70.1 MHz模拟输入频率的条件下,该ADC的SFDR为59.6 dBc,稳态总剂量能力为 2 500 Gy(Si),单粒子闩锁阈值为75 MeV·cm2/mg,功耗为69 mW。该ADC采用0.35 μm CMOS工艺制作,面积为0.75 mm2。该ADC适用于空间环境的通信系统。  相似文献   

6.
《今日电子》2011,(6):61-61
ISLA216P采用Intersil自主研发的FemtoCharge技术,采样率高达250MSPS,电耗仅为786mW;同时保证在30MHz输入频率条件下,无杂散动态范围(SFDR)达87dBc。  相似文献   

7.
门控时钟的低功耗设计技术   总被引:8,自引:4,他引:8  
门控时钟是一种有效的低功耗设计技术,文章介绍了该技术的一种EDA实现方法。介绍了其设计思想和实现细节,重点对设计过程中存在可测性设计(DFT)以及时序分析、优化和验证等问题分别进行了详细分析,并给出了相应的解决方法,以使该技术更好地融入到常用的SoC设计流程当中,发挥更高的效率。  相似文献   

8.
朱天成  姚素英  李斌桥 《半导体学报》2007,28(12):1924-1929
提出了一个用于CMOS图像传感器的9位10MS/s、低功耗流水线ADC.为降低功耗,该设计通过采用低功耗、宽摆幅的带有增益增强结构的放大器以及将所有单元共用偏置电路的技术来实现,共用偏置技术需要仔细的版图设计和在电路中加入大的去耦合电容来实现。此外,设计中也采用电容阵列DAC来降低功耗,同时,为了增大信号处理范围,设计中还采用低阈值电压的MOS管,该ADC采用4M-1P的0.18μm CMOS工艺设计制造,对芯片的测试结果表明该设计的功耗仅为7mW,相对其他设计是相当低的,该ADC已经应用于30万像素图像传感器系统中,该系统已经流片、测试。  相似文献   

9.
朱天成  姚素英  李斌桥 《半导体学报》2007,28(12):1924-1929
提出了一个用于CMOS图像传感器的9位10MS/s、低功耗流水线ADC.为降低功耗,该设计通过采用低功耗、宽摆幅的带有增益增强结构的放大器以及将所有单元共用偏置电路的技术来实现.共用偏置技术需要仔细的版图设计和在电路中加入大的去耦合电容来实现.此外,设计中也采用电容阵列DAC来降低功耗.同时,为了增大信号处理范围,设计中还采用低阈值电压的MOS管.该ADC采用4M-1P的0.18μm CMOS工艺设计制造.对芯片的测试结果表明该设计的功耗仅为7mW,相对其他设计是相当低的.该ADC已经应用于30万像素图像传感器系统中,该系统已经流片、测试.  相似文献   

10.
集成电路的低功耗和散热设计是ASIC(专用集成电路)芯片发展中比较突出的问题。文中从理论上对由于寄生负载电容进行充放电、漏电流和亚阈电流造成的集成电路功耗进行了探讨,从而找出降低集成电路功耗的多种方法。  相似文献   

11.
宋苗  李波  刘青凤 《微电子学》2018,48(3):295-299
基于0.35 μm CMOS工艺,设计并制作了一种低功耗流水线型ADC。分析了ADC结构对功耗的影响,采用1.5位/级的流水线结构来最小化功耗,并提升速度。为进一步降低功耗,设计了一种不带补偿并可调节相位裕度的共源共栅跨导放大器(OTA)和改进的比较器。测试结果显示,该ADC在3 V电源电压、100 MS/s采样速率下,功耗为65 mW,面积为0.73 mm2,在模拟输入频率为70.1 MHz和141 MHz下的无杂散动态范围(SFDR)分别为59.8 dBc和56.5 dBc。该ADC可应用于需要欠采样的通信系统中。  相似文献   

12.
周晓丹  苏晨  刘涛  李曦  付东兵  李强 《微电子学》2022,52(4):577-581
基于0.18μm CMOS工艺设计与实现了一种14位85 MS/s流水线型模数转换器(ADC)。采用多种低功耗设计技术来降低系统功耗和面积,包括无采样保持电路前端和运算放大器共享等技术。在无数字校准的条件下,在3.3 V电源电压、85 MHz的时钟频率和70 MHz正弦输入信号频率下,达到了67.9 dBFS的信噪比(SNR)以及82.2 dBFS的无杂散动态范围(SFDR)。该ADC功耗为322 mW,面积为0.6 mm2,适合用于需求低功耗ADC的通信系统中。  相似文献   

13.
基于电子不停车收费系统(ETC)接收机的要求,在TSMC018μm工艺下设计并实现一种8bit 32 MS/s流水线型模数转换器。通过详细理论分析确定设计参数和电路模型,通过运放共享以及带有增益自举的套筒式运算放大器和开关电容共模反馈电路降低电路的静态功耗,通过动态比较器以及静态锁存结构降低电路的动态功耗,使得功耗降低为原来的一半。测试结果显示ADC输入摆幅-0.4~0.4V下,功耗5.017mA,非使能状态下功耗0.567μA,信噪比(SNR)49.21dB,有效位(ENOB)7.77bit,无杂散噪声(SFDR)65.41dB,面积580μm×450μm。  相似文献   

14.
介绍了一种12 bit 80 MS/s流水线ADC的设计,用于基带信号处理,其中第一级采用了2.5 bit级电路,采样保持级采用了自举开关提高线性,后级电路采用了缩减技术,节省了芯片面积.采用了折叠增益自举运放,优化了运放的建立速度,节省了功耗.芯片采用HJTC0.18μm标准CMOS工艺,1.8 V电压供电,版图面积2.3 mm × 1.4 mm.版图后仿真表明,ADC在8 MHz正弦信号1 V峰值输入下,可以达到11.10 bit有效精度,SFDR达到80.16 dB,整个芯片的功耗为155 mW.  相似文献   

15.
16.

该文提出一种用于电荷域流水线模数转换器(ADC)的高精度输入共模电平不敏感采样保持前端电路。该采样保持电路可对电荷域流水线ADC中由输入共模电平误差引起的共模电荷误差进行补偿。所提出的高精度输入共模电平不敏感采样保持电路被运用于一款14位210 MS/s电荷域ADC中,并在1P6M 0.18 μm CMOS工艺下实现。测试结果显示,该14位ADC电路在210 MS/s条件下对于30.1 MHz单音正弦输入信号得到的无杂散动态范围为85.4 dBc,信噪比为71.5 dBFS,而ADC内核功耗仅为205 mW,面积为3.2 mm2

  相似文献   

17.
设计了一种应用于12 bit 250 MS/s采样频率的流水线模数转换器(ADC)的运算放大器电路.该电路采用全差分两级结构以达到足够的增益和信号摆幅;采用一种改进的频率米勒补偿方法实现次极点的“外推”,减小了第二级支路所需的电流,并达到了更大的单位增益带宽.该电路运用于一种12 bit 250 MS/s流水线ADC的各级余量增益放大器(MDAC),并采用0.18 μm 1P5M 1.8 V CMOS工艺实现.测试结果表明,该ADC电路在全速采样条件下对于20 MHz的输入信号得到的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,整个ADC电路的功耗为320 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号