首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
根据平移模式下的微元滑裂体水平面上的剪力为零的条件和土拱效应,获得受填土内摩擦角和墙土摩擦角影响的非极限滑裂面倾角和非极限主动土压力系数,其中,非极限填土内摩擦角和墙土摩擦角是墙体位移的函数。根据非极限水平微元滑裂体的静力平衡,得到平移模式下考虑土拱效应和位移影响的非极限主动土压力计算式。参数影响分析表明:非极限滑裂面倾角和非极限主动土压力系数均随非极限墙土摩擦角的增大而增大;非极限主动土压力系数和非极限主动土压力均随侧向位移比的增大而减小;非极限主动土压力分别随着非极限填土内摩擦角、非极限墙土摩擦角的增大而减小。理论值及试验值的对比结果显示:相较于其他方法,本文方法的非极限主动土压力理论值与试验值吻合更好。  相似文献   

2.
 针对现有地震被动土压力计算方法的局限性与不足,在平面滑裂面假设下,提出采用拟动力法计算填土表面有均布荷载作用下的地震被动土压力,同时得到被动土压力沿墙高的分布曲线。通过分析墙土摩擦角、填土内摩擦角、水平向和竖向地震加速度系数对被动土压力值及其分布的影响,得出地震被动土压力随墙土摩擦角及填土内摩擦角的增大而增大,随水平向及竖向地震加速度的增大而减小。拟动力法计算得到的地震被动土压力值大于Mononobe-Okabe理论的计算值,且所得的地震被动土压力沿墙高呈非线性分布。  相似文献   

3.
建立在半无限土体假定上的朗肯土压力理论和库伦土压力理论,在挡土墙后填土有限的情况下不再适用。针对墙后无黏性填土,采用离散元方法分别对光滑、粗糙墙面平动模式下墙后有限宽度土体主动破坏的过程进行研究,分析了挡土墙运动过程中滑裂带发展、土体位移规律以及墙后水平土压力分布的情况。研究结果表明,墙体光滑情况下,滑裂带呈直线,墙后填土宽高比较小时,可以观察到滑裂带的反射,墙后土体呈多折线破坏模式,滑裂带倾角基本与库伦理论滑裂带倾角相等,且与土体宽高比无关,水平土压力合力受土体宽高比影响亦不大。墙体粗糙情况下,滑裂带呈曲线,反射现象随墙体粗糙程度增加而减弱,滑裂带倾角随土体宽高比增大而减小,最终落于库伦理论滑裂带内侧。此时,存在一临界宽高比,当墙后土体宽高比小于此值时,主动土压力随宽高比增大而增大,大于此值时,主动土压力不受宽高比影响。而无论墙体粗糙与否,墙后土体宽高比越小,达到极限状态所需墙体位移均越小。  相似文献   

4.
挡土墙后黏性土的地震主动土压力分析   总被引:2,自引:1,他引:1  
在Mononobe-Okabe平面滑裂面假设的基础上,考虑地震加速度的放大效应,运用拟动力学的分析方法,得到考虑时间和相位变化的刚性挡土墙后黏性土地震主动土压力系数、地震主动土压力合力和主动土压力分布强度的理论公式。在此基础上,利用优化算法得到地震卓越周期中的最不利工况,分析水平和竖向地震加速度系数、内摩擦角、墙面摩擦角、挡土墙倾角和地震放大系数对最不利工况下滑动面倾角、主动土压力系数、临界深度、合力作用点和土压力分布的影响。研究表明:地震主动土压力分布为非线性;地震加速度的存在大大增加黏性土的主动土压力;挡土墙倾角和地震放大效应对临界深度、合力作用点和土压力分布都有着明显影响。  相似文献   

5.
 在Mononobe-Okabe拟静力学理论的基础上,对挡土墙后填土进行应力分析,根据静力平衡求得滑裂面水平倾角。再结合土拱效应原理采用水平层分析法,对处于正常受力状态的填土微元体进行应力分析,并根据静力平衡和力矩平衡建立方程组,从而求得适用范围更广的地震作用下墙后土体的主动土压力、土压力系数、土压力合力作用点位置等的计算公式。利用数值方法分析土内摩擦角、墙土面摩擦角以及水平和竖向地震系数对滑裂角、主动土压力、土压力系数、土压力合力作用点位置的影响,并将计算结果与其他计算方法所得结果以及试验结果进行对比分析。  相似文献   

6.
由土拱效应原理得到滑裂土体的墙面和滑裂面上的应力,然后根据拟静力法和滑裂土体的整体受力平衡,得到平移模式下非垂直刚性挡土墙的地震主动破裂角计算式。进一步根据水平层分法获得墙背地震主动土压力及其系数、地震主动土压力合力及其作用点高度等的计算式。此外,分别讨论墙背倾角、填土内摩擦角、墙土摩擦角、地震系数和填土表面荷载等对地震主动破裂角、法向地震主动土压力分析、地震主动土压力合力系数、地震主动土压力合力及其作用点相对高度等的影响。  相似文献   

7.
狭窄黏性填土刚性挡墙主动土压力研究   总被引:2,自引:0,他引:2  
对于临近既有地下室或竖直基岩面的挡土墙,由于墙后填土宽度有限,采用经典的库伦、朗肯土压力理论计算挡土墙主动土压力是不合适的。采用有限元分析软件ABAQUS,对狭窄黏性填土刚性挡土墙的主动土压力问题进行研究,探讨了墙后土体的临界裂缝深度和滑裂面的发展规律。考虑墙土之间的黏着力和填土竖向裂缝,建立新的理论分析模型,得到了挡土墙水平主动土压力合力的求解方法和主动土压力分布的解析公式。土压力合力系数与土压力强度的理论解和数值解吻合较好,验证了本文理论解的合理性。研究表明,主动极限状态下,填土表面两侧均将产生竖向裂缝,且临界裂缝深度不随填土宽度变化,其值与朗肯裂缝深度接近;随着填土宽度的减小,填土内将产生一道甚至多道滑裂面,挡土墙主动土压力也从基于半无限土体假定的广义库伦土压力值逐渐减小。  相似文献   

8.
 对于挡土墙距既有地下室很近,墙后填土宽度有限的情形,采用经典的库仑、朗肯土压力理论计算挡墙主动土压力是不严格的。通过有限元数值分析发现,当挡墙平动、填土达到主动极限状态时,无黏性土滑动土楔与邻近地下室外墙并未脱开,地下室外墙上全深度承受侧压力;随着填土宽高比n的不同,挡墙与地下室外墙间土体内将形成一道或多道滑裂面,且最靠近地表的滑裂面与挡墙或地下室外墙交点以上的土压力近似为库仑主动土压力。由此建立新的土压力计算模型,给出了挡墙主动土压力系数 和第一道滑裂面倾角 的求解方法,采用水平薄层单元法,得到了挡土墙主动土压力的分布以及合力作用点相对高度 的理论公式,并通过典型算例,与经典土压力理论、前人理论方法及有限元数值解进行对比。研究发现,挡土墙土压力为非线性的鼓形分布,当土体内摩擦角 和墙土摩擦角 取定值且 0°时, 随着n的增大而增大,而 和 随着n的增大而减小,当 时, 和 值与库仑解一致;当 0°时,不论n取何值, 和 值恒等于朗肯理论解,且 。  相似文献   

9.
水平柔性拉筋式重力墙是一种新型耐震结构,为研究墙后地震土压力,运用拟静力法并基于塑性极限分析上限原理,采用平面滑动破坏机构,考虑拉筋拔出和拉断两种破坏模式,推导墙后地震土压力的计算公式,并通过数值模拟方法进行验证,且讨论了填土内摩擦角、黏聚力、墙背外摩擦角、拉筋间距、极限拉力以及拉筋长度对地震土压力的影响特征。实例分析结果表明:随填土强度参数的增大地震土压力总体呈非线性减小,墙背外摩擦角对地震土压力的影响较小;随拉筋竖向间距增大,土压力呈非线性增大,但增幅渐小;拉筋极限拉力达到一定值后,对土压力没有影响;随拉筋长度在一定范围内的增加,墙后土压力逐渐减小。  相似文献   

10.
为确定悬臂式挡土墙立臂的地震主动土压力,针对墙后填土的5种可能失稳破坏模式,基于对数螺旋式滑裂面形态,采用极限分析上限定理与拟静力法推导了作用于假想坦墙背上的地震土压力合力;在此基础上,对坦墙背后滑楔体、立臂与坦墙背之间的土体分别采用斜条分与水平条分法,并通过土压力合力的上限解对坦墙背上的土压应力进行修正,进而求得立臂上的土压力分布。实例分析表明,立臂静土压力沿深度分布呈顶点位于下部的抛物线模式;地震土压力分布一般呈非线性递减模式,计算值与试验值有良好的一致性;两种工况下合力作用点分别位于立臂下半段与上半段。参数分析显示,水平地震影响系数、踵板宽度和立臂倾角的增加均使立臂中上部地震主动土压力显著增大;地震条件下增长踵板宽度会导致立臂受力增加。在强震条件下,本法得到的立臂土压力比铁路规范法的结果高出约9%~14%,立臂底端弯矩更显著高于规范法结果,规范法进行强震条件下悬臂墙的抗震设计可能偏于不安全。  相似文献   

11.
Rankine classic earth pressure solution has been expanded to predict the seismic active earth pressure behind rigid walls supporting c–φ backfill considering both wall inclination and backfill slope. The proposed formulation is based on Rankine's conjugate stress concept, without employing any additional assumptions. The developed expressions can be used for the static and pseudo-static seismic analyses of c–φ backfill. The results based on the proposed formulations are found to be identical to those computed with the Mononobe–Okabe method for cohesionless soils, provided the same wall friction angle is employed. For c–φ soils, the formulation yields comparable results to available solutions for cases where a comparison is feasible. Design charts are presented for calculating the net active horizontal thrust behind a rigid wall for a variety of horizontal pseudo-static accelerations, values of cohesion, soil internal friction angles, wall inclinations, and backfill slope combinations. The effects of the vertical pseudo-static acceleration on the active earth pressure and the depth of tension cracks have also been explored. In addition, examples are provided to illustrate the application of the proposed method.  相似文献   

12.
In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wall–soil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wall–soil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method (FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.  相似文献   

13.
依据拟静力学理论,考虑主应力偏转的影响,推导了绕墙顶转动模式(RT模式)下的地震主动土压力的计算公式。通过旋转挡土墙的解析模型,将地震问题转化为静力问题,并根据库仑土压力理论得到地震主动破裂角。在此基础上改进圆弧形小主应力偏转迹线,利用摩尔应力圆得到了RT模式下地震主动侧压力系数和水平微元土层间摩擦系数公式,提出基于微分薄层法的地震主动土压力解析式。分析了主要参数对地震主动破裂角、地震主动侧压力系数、水平微元土层间摩擦系数、地震主动土压力分布和侧向土压力作用位置的影响。将解析结果与其他土压力理论及试验数据进行对比,结果表明本文方法更为可靠。  相似文献   

14.
刘忠玉  陈捷 《岩土工程学报》2016,38(12):2254-2261
以墙后为无黏性填土的刚性挡土墙为研究对象,假定破裂面为通过墙踵的平面,且墙后土体中形成圆弧形土拱,考虑滑动土楔内水平土层间的平均剪应力,修正水平层分析法,得到平动模式下主动土压力的表达式。通过与文献中模型试验结果和现有理论成果的对比分析证明了修正方法的合理性。参数分析表明,水平土层间的平均剪应力和主动土压力一样,沿墙高为非线性分布,主要受墙背倾角、墙土摩擦角、填土内摩擦角等因素的影响。对于墙背竖直或墙背较陡且比较粗糙的挡土墙,考虑水平土层间平均剪应力作用算得的主动土压力合力作用点位置高于库仑解且低于不考虑剪应力作用的理论解答,而对墙背较缓且比较光滑的挡土墙,情况则正好相反。而且,不论是否考虑水平土层间的平均剪应力,主动土压力合力作用点位置都会随墙背变缓而降低。  相似文献   

15.
考虑土拱效应的黏性填土挡土墙主动土压力研究   总被引:3,自引:0,他引:3  
 以墙后填土为黏性土的刚性挡土墙为研究对象,考虑挡土墙后的土拱效应,以及墙土摩擦角、墙土黏结力、墙后填土黏聚力的影响,推导挡土墙在平动模式下的主动土压力系数和主动土压力解析解。结果表明,考虑土拱效应的主动土压力系数和主动土压力均与墙土摩擦角、计算点深度以及墙后填土的内摩擦角、黏聚力及重度有关。通过将求解的主动土压力系数和主动土压力与现有经典理论解及前人理论研究成果对比,发现结果完全吻合,验证该研究结果的正确性。  相似文献   

16.
挡土墙被动土压力的库仑统一解   总被引:2,自引:0,他引:2       下载免费PDF全文
彭明祥 《岩土工程学报》2008,30(12):1783-1788
基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,指出库仑土压力理论存在的一些缺陷,明确提出极限土压力是由墙后塑性土体产生,并假定塑性区的一族滑移线为直线即平面滑裂面,建立了更为完善的滑楔分析模型,求解了在一般情况下考虑黏性土作用的挡土墙被动土压力、滑裂面土反力以及它们的分布。经典库仑和朗肯被动土压力为其特例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号