首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
采用FDY热辊纺丝拉伸一步法纺制涤纶高收缩FDY。论述了各项关键技术参数如预结晶及干燥温度、纺丝温度、熔体压力、冷却条件、纺丝速度、拉伸及定型工艺、卷绕张力等对纤维的收缩率的影响。找到纺制涤纶高收缩FDY的最佳纺丝工艺,并能够稳定地控制其收缩率。  相似文献   

2.
采用切片纺丝路线,探讨采用不同特性黏数([η])的聚对苯二甲酸乙二醇酯(PET)切片制备超高强涤纶短纤维的可行性;并选用[η]较高的PET切片在切片纺工业化涤纶短纤维装置上通过纺丝温度、拉伸倍数、拉伸温度和热定型温度等工艺参数的调整优化,试生产超高强涤纶短纤维。结果表明:采用[η]较高的PET切片,选择合适的纺丝和后加工条件可以生产超高强涤纶短纤维;选择[η]为0.731 dL/g的PET切片为原料,在7500 t/a切片纺涤纶短纤维装置常规生产工艺基础上,调整纺丝螺杆温度为290~295℃、箱体温度为296~300℃,初生纤维断面不匀率小于等于1.21%,纺丝状况良好;调整水浴拉伸温度为70℃、总拉伸倍数为3.878、热定型温度为185℃,试生产的涤纶短纤维结晶度和非晶区取向有所增大,断裂强度达7.02 cN/dtex,达到了超高强纤维的要求。  相似文献   

3.
模拟研究超细旦涤纶长丝纺丝工艺   总被引:1,自引:0,他引:1  
基于熔融纺丝动力学模型及理论,建立了超细旦长丝纺丝成形工程数学模型,模拟纤维温度、速度、应力、取向在纺程上的变化情况,分析超细旦涤纶成形特点,进一步研究了缓冷区温度对超细旦纤维纺丝成形的影响,为制备高品质超细旦涤纶长丝提供理论依据。  相似文献   

4.
介绍了 8 7dtex/ 72f涤纶细旦POY生产过程 ,通过调整和优化生产工艺 ,如控制切片质量、纺丝温度、侧吹风速度及温度、上油率、卷绕速度等 ,在常规熔融纺丝设备上可生产出优质涤纶细旦POY。  相似文献   

5.
以锦纶 6为皮 ,涤纶为芯进行复合纺丝 ,探讨纺丝和后加工过程的生产工艺。指出 :生产中只要严格控制锦纶 6纺丝温度为 2 82℃ ,涤纶纺丝温度为 2 85℃、侧吹风温度 17℃、后纺总拉伸倍数 3.6 75、拉伸温度 6 5℃以及加强定型后的冷却 ,便可生产出质量稳定的锦涤复合纤维 ,其性能指标接近或超过锦纶短纤维。  相似文献   

6.
周国祥 《合成纤维》2012,41(1):42-45
以6.67 dtex×51 mm蓝色涤纶短纤维为例,探讨了采用再生聚酯回收料和原生聚酯料在纺丝生产工艺上的不同。使用再生聚酯回收料生产时,选择降低干燥温度、纺丝温度、纺丝速度、环吹风速、拉伸倍数以及后拉伸浴槽温度的优化工艺,可生产出性能优良的6.67 dtex×51 mm蓝色涤纶短纤维。  相似文献   

7.
纺制涤纶异形长丝的几点体会   总被引:1,自引:0,他引:1  
现采用六叶形、双十形等异形纺丝板试纺涤纶长丝,发现纺丝温度、纺丝板喷丝速度、熔体压力和分子量等对涤纶长丝异形度影响比较显著,纺丝和拉伸工艺条件对纤维质量及异形度的影响如下:  相似文献   

8.
阳离子改性涤纶细旦长丝的开发与应用   总被引:1,自引:4,他引:1  
探讨了阳离子改性涤纶细旦长丝在常规纺丝速度下的可纺性和生产工艺条件,试验结果表明:干燥工艺、纺丝温度、冷却成形条件、后拉伸倍数和拉伸温度以及复合混纤技术等因素直接影响阳离子改性涤纶细旦长丝的结构性能和纤维质量。  相似文献   

9.
晏金龙 《合成纤维》2012,41(12):37-39
介绍了熔体直纺生产205 dtex/192f细旦扁平涤纶预取向丝(POY)的工艺路线,并讨论了纺丝温度、冷却成形、上油位置及方式、卷绕工艺、喷丝板选型等对生产细旦扁平涤纶POY的影响.结果表明:选择较高的纺丝温度,严格控制环吹风条件,适当提高集束点位置,优化上油均匀性,降低纺丝速度,适当提高卷绕张力,降低成型角,可制得质量较好的细旦扁平涤纶POY.  相似文献   

10.
探讨了在5万t/a大容量涤纶短纤维生产线上生产1.33 dtex超有光缝纫线型涤纶短纤维的纺丝、牵伸工艺条件对产品质量的影响。结果表明:通过调整熔体黏度、纺丝温度、主风道压力、纺丝速度等因素,可以提高短纤维的断裂强度,降低断裂伸长率以及180℃干热收缩率,生产的1.33 dtex超有光缝纫线型涤纶短纤维质量稳定。  相似文献   

11.
测试比较了聚酯短纤维、亲水性聚酯短纤维、脱脂棉纤维在不同温度下对气态水的吸湿与放湿性能,分析了纤维中亲水基团对吸湿速率的影响,以及烘干温度对纤维回潮率的影响。结果表明:在105℃条件下,亲水性聚酯短纤维中的水分不能完全脱除;随着烘干温度从105℃上升至125℃,亲水性聚酯短纤维以及脱脂棉纤维继续脱除水分,且水分释放变化率更明显;随着烘干温度从105℃升至125℃,聚酯短纤维的回潮率没有变化,保持在0.40%,而亲水性聚酯短纤维的回潮率从1.33%提高至1.43%;亲水性聚酯短纤维对气态水的吸湿与放湿性能明显强于聚酯短纤维。  相似文献   

12.
在常规涤纶短纤维生产线上,采用专用中空喷丝板,生产细旦中空涤纶短纤维,探讨了其生产工艺。结果表明:纺丝温度高,纤维中空度减少,但温度过低,难以形成中空;随着环吹风速度的增加,风温降低,纤维中空度增高;拉伸温度对纤维中空度影响小。选择纺丝温度288~291℃,环吹风速度0.8~1.3m/s,环吹风温度17~23℃,拉伸温度85~90℃,生产的0.89 dtex×38 mm,1.33 dtex×38 mm,1.56 dtex×38mm中空涤纶纤维中空度均达19%~20%,产品质量达到了同类进口产品的使用性能。  相似文献   

13.
李瑞雪 《合成纤维》2014,(8):18-20,23
缝纫线对涤纶短纤维的要求是强度高、伸长率低、热水洗涤后收缩率尽可能小。介绍了在天津石化10万t/a聚酯短丝装置上,利用现有设备生产1.33 dtex×38 mm半光缝纫线型涤纶短纤维的纺丝和后处理工艺技术特点,着重讨论了通过优化聚酯熔体黏度、纺丝温度、冷却条件、牵伸倍率以及热定形温度等工艺提高短纤维的断裂强度。  相似文献   

14.
采用特性黏数为0.677 dL/g的有光聚酯切片熔融纺丝生产正三角形涤纶短纤维,探讨了切片干燥、纺丝成形、拉伸、热定型等对生产及纤维性能的影响。结果表明:控制聚酯切片含水率小于28μg/g,纺丝温度282~286℃,纺丝速度930~950 m/min,拉伸温度60~70℃,总拉伸倍数3.50~3.65,生产稳定,得到的1.67 dtex有光正三角形涤纶短纤维截面清晰,异形度为55.1%,断裂强度为5.09 cN/dtex,断裂伸长率为28.5%,180℃干热收缩率为8.4%。  相似文献   

15.
以再生聚酯瓶片料和泡料混合料为原料进行并列复合纺丝,并经后纺工艺处理得到并列复合再生聚酯短纤维。通过对纤维进行干热定形,研究热定形温度、时间对并列复合再生聚酯短纤的强伸性能、卷曲性能和热收缩性能的影响。结果表明:聚酯短纤维的断裂强度和断裂伸长率随着热定形温度升高而增大;断裂强度随热定形时间的延长逐渐下降,断裂伸长率先增大后减小,在20 min时达到最大值,为17.4%,声速取向因子则随着热定形时间的延长呈现下降趋势。纤维的卷曲性能随着热定形温度的升高而改善,较短的时间内,纤维的卷曲性能已经达到最佳;热定形温度的升高使纤维的热收缩率增大;并列复合再生聚酯短纤维的最佳热定形温度是140~160℃,最佳定形时间为10 min。  相似文献   

16.
利用回收聚酯纺制阻燃短纤维的工艺探讨   总被引:2,自引:0,他引:2  
黄婉娟 《合成纤维》1998,27(4):52-54
以回收聚酯为原料,添加阻燃母粒,在VD403设备上,共混纺丝制取阻燃短纤维.本文对生产过程中阻燃母粗加入量、纺丝温度、冷却成形条件及后拉伸等工艺进行了探讨.成品纤维的LOI≥27%,阻燃性能达到要求.  相似文献   

17.
抗菌中空细旦涤纶短纤维的性能分析   总被引:2,自引:1,他引:1  
对抗菌中空细旦涤纶短纤维的形态结构和性能进行了分析,与普通涤纶、毛纤维、粘胶纤维(棉型)、大豆纤维、竹纤维、牛奶纤维进行了比较。结果表明:抗菌中空细旦涤纶短纤维与其他纤维比较,动摩擦系数和静摩擦系数较低,分别为0.278,0.167,钩结强度高为82.9%,初始模量大为98.5~125.9 cN/dtex,结节强度高为88.5%,干、湿态断裂强力大,分别为3.57,3.49cN/dtex,卷曲性能较好,卷曲数为5.72~6.49个/cm,具有一定的导电导湿和透气性能。  相似文献   

18.
探讨了竹炭改性涤纶短纤维,并对竹炭改性涤纶短纤维的远红外发射率及负离子发生量等进行了测试.结果表明:竹炭改性涤纶短纤维中的竹炭粉体具有多孔结构,且在纤维中能均匀分散,竹炭改性涤纶的负离子发生量达5 200个/m3,高于普通涤纶,负离子释放稳定;功能纤维远红外发射率高达0.88,其白度为57.29%,线密度和断裂强度超过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号