首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is designed to study crack development and resistance changes in aluminum thin films under stretching. Crack development and relative electrical resistance change (?R/R0) of aluminum thin film on 127-μm poly ethylene terephthalate substrates were investigated as a function of engineering strain. Four thicknesses were considered for the aluminum thin films: 50, 100, 200, and 500 nm. The engineering stress-engineering strain curves were very similar for all thicknesses. Three strain rates were considered in this study: 0.1 min− 1, 0.5 min− 1 and 1.0 min− 1. Before the yield point, there was no stress difference under different strain rates. However, after the yield point, stress was higher at a higher strain rate. It was found that ?R/R0 was very sensitive to the film thickness. Optical microscope images at high magnification showed that cracks were observed at 2% strain for 100, 200, and 500 nm-thick films and at 8% strain for the 50 nm-thick films. Short lateral cracks (perpendicular to the original cracks) were observed at 20% strain for the 100 and 200 nm thick films and at 30% for the 500 nm thick films.  相似文献   

2.
In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 °C are investigated.The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion.It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 °C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy ΔE = 0.66 eV and the corresponding pre-exponential factor D0 = 5 × 10− 11 cm2/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < ΔEgb < 0.66 eV and the pre-exponential factor s0Dgb0 = 1.14 × 10− 8 cm2/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 °C.  相似文献   

3.
Thermal stability of silver thin films on zirconia substrates   总被引:1,自引:0,他引:1  
The thermal stability of silver thin films between 100 nm and 820 nm thick deposited onto single crystal yttria-stabilised zirconia (YSZ) substrates by evaporation was investigated by annealing the films between 250 °C and 550 °C for different durations. Films approximately 100 nm thick were thermally unstable at temperatures as low as 250 °C. A dewetting process occurred in which grain boundaries ruptured, to uncover the substrate and reduce the overall energy of the system, by a combination of grain boundary grooving at the outer surface and void growth at the Ag-YSZ interface. The surface self diffusion coefficient of Ag was determined from the kinetics of the process to be 2.6 ± 0.3 × 10− 5 cm2s− 1 at 500 °C. The resulting silver morphology ranged from ‘self-organised’ interconnected silver network structures to completely isolated silver islands. A structure predominance map of the rearrangement process is presented.  相似文献   

4.
Giant magnetoresistance (GMR) effect in cobalt based pseudo spin-valves (SV) is combined with the inverse magnetostriction in sensors of mechanical strain. SV with Co/Au/Co core structure were deposited onto the flexible 125 μm thick polyimide substrates. The influence of magnetostriction on GMR was studied in bending current-in-plane configuration. Total relative strain was between −8.6 × 10−3 (compression) and 8.6 × 10−3 (tension). SV were designed with respect to the oscillating nature of exchange coupling force vs. spacer thickness. The period of oscillations is not changing under the applied stress in our experimental configuration. From the magnetoresistance ratio vs. strain dependences it follows that the output signal of the strained sensor vs. unloaded one could be improved by a proper choice of the spacer thickness ts. If ts = 4 nm the relative output is 36% and for ts = 2.4 nm it is 34%, however, in this case only in the half range of the strain between 0 and ±8.6 × 10−3. For ts = 2.2 nm the relative output is only 10%.  相似文献   

5.
Copper indium diselenide (CuInSe2) compound was prepared by direct reaction of high-purity elemental copper, indium and selenium. CuInSe2 thin films were deposited onto well-cleaned glass substrates by a hot wall deposition technique using quartz tubes of different lengths (0.05, 0.07, 0.09, 0.11 and 0.13 m). X-ray diffraction studies revealed that all the deposited films are polycrystalline in nature and exhibit chalcopyrite structure. The crystallites were found to have a preferred orientation along the (1 1 2) direction. Micro-structural parameters of the films such as grain size, dislocation density, tetragonal distortion and strain have been determined. The grain sizes in the films were in the range of 65-250 nm. As the tube length increases up to 0.11 m the grain size in the deposited films increases, but the strain decreases. The film deposited using the 0.13 m long tube has smaller grain size and more strain. CuInSe2 thin films coated using a tube length of 0.11 m were found to be highly crystalline when compared to the films coated using other tube lengths; it has also been found that films possess the same composition (Cu/In=1.015) as that of the bulk. Scanning electron microscope analysis indicates that the films are polycrystalline in nature. Structural parameters of CuInSe2 thin films deposited under higher substrate temperatures were also studied and the results are discussed. The optical absorption coefficient of CuInSe2 thin films has been estimated as 104 cm−1 (around 1050 nm). The direct band gap of CuInSe2 thin films was also determined to be between 1.018 and 0.998 eV.  相似文献   

6.
Fluorine-doped ZnO transparent conducting thin films were prepared by radio frequency magnetron sputtering at 150 °C on glass substrate. Thermal annealing in vacuum was used to improve the optical and electrical properties of the films. X-ray patterns indicated that (002) preferential growth was observed. The grain size of F-doped ZnO thin films calculated from the full-width at half-maximum of the (002) diffraction lines is in the range of 18-24 nm. The average transmittance in visible region is over 90% for all specimens. The specimen annealed at 400 °C has the lowest resistivity of 1.86 × 10− 3 Ω cm, the highest mobility of 8.9 cm2 V− 1 s− 1, the highest carrier concentration of 3.78 × 1020 cm− 3, and the highest energy band gap of 3.40 eV. The resistivity of F-doped ZnO thin films increases gradually to 4.58 × 10− 3 Ω cm after annealed at 400 °C for 4 h. The variation of the resistivity is slight.  相似文献   

7.
Aluminium alloys containing eutectic particles of the Al-Ni, Al-Mg-Si, Al-Ni-Ce and Al-Cu-Ce systems are investigated. The particles which control grain growth and stimulate grain nucleation are studied. The Zener-Smith law about dependence between grain size and particle parameters is confirmed and experimental coefficients are found. Experimental coefficients of the Zener-Smith equation obtained in this study depend on the particle size and differ from theoretical coefficients proposed by Zener and Smith. Some alloys with grain size about 3 μm demonstrate very good superplasticity indicators, namely: the strain rate sensitivity index m = 0.5-0.6 and the elongation over 400% at constant strain rate 5 × 10−3 s−1.  相似文献   

8.
Nanoscaled bimetallic Cu/Ta multilayers were fabricated and their deformation behaviors characterized under nanoindentation. The individual Cu and Ta layers had equal thickness (∼30 nm) but quite different grain sizes. By evaluating the hardness of the bi-metal system at various strain rates, a transitional point of its strain rate sensitivity at the strain rate of 10−3 s−1 was observed. Contributions from dislocation and grain boundary (GB) motions to plastic deformation are found to be strongly dependent upon strain rate as well as grain size in alternative constituent layers. Whilst dislocation-mediated motions take up the majority of deformation in a Cu/Ta multilayer at high strain rates, GB motions occurring mainly in the Ta layers take over at low strain rates.  相似文献   

9.
AFM, XRD, zeta (ζ) potential measurement and spectroscopic ellipsometry were used for characterization of thin (20 nm) Au films sputtered onto polyethyleneterephthalate (PET). Sputtered Au film shows significantly different surface morphology and roughness in comparison with pristine PET. From XRD measurement of 20 nm thick sputtered Au layers it was found that Au crystalizes preferentially in (111) direction with lattice parameter of a = 0.40769 nm, density of ρ = 19.338 g cm− 3 and lattice stress of about 230 MPa. Higher surface conductance of Au/PET by ζ-potential measurement was found. Au layer thickness of 19.4 nm determined from spectroscopic ellipsometry was in good agreement with the AFM estimated value of 20 nm.  相似文献   

10.
Au layers with thickness of about 110 nm were sputter-deposited on unheated glass substrates coated with a Cr layer about 20 nm thick. The chamber was evacuated to a pressure of 2 Pa and then sputtering was carried out at Ar pressure of 4 Pa. The Au/Cr bilayer films were annealed in a vacuum of 5×10−4 Pa at 170°C, 180°C, 200°C and 250°C for from 5 to 120 min, respectively. Atomic force microscopy was used to observe the structural characteristic of the bilayer films. Auger electron spectroscopy was used to analyze the composition inside the Au layers. The sheet resistance of the films was measured using the four-point probe technique. The grain size of the bilayer film gradually increases with an increase in annealing temperature while its average surface roughness ranging from 4.5 to 6.8 nm does not show any systematic change with annealing temperature and time. No impurities such as carbon, nitrogen and oxygen are detected inside all of the Au layers. When the annealing temperature reaches 200°C and the annealing time exceeds 30 min, chromium atoms markedly diffuse into the Au layer. Furthermore, for the bilayer films annealed at 250°C, chromium atoms have markedly diffused into the Au layer even for annealing time of 5 min. Regardless of the increase in grain size of the Au layer, the diffusion of chromium atoms into the Au layer causes an increase in the resistivity of the bilayer film.  相似文献   

11.
NiO nanoparticles of 20 nm in diameter were spark plasma sintered between 400 °C and 600 °C for 5 and 10 min durations. Application of 100 MPa pressure from room temperature resulted in densities between 75% and 92%. The final grain size was between 26 nm and 68 nm. Lower densities were recorded when 100 MPa was applied at the SPS temperature. Two shrinkage rate maxima of ∼3.4 × 10−3 s−1 and ∼2 × 10−3 s−1 were observed around 390 ± 10 °C and at the SPS temperature. The two shrinkage rate maxima were related to densification by particle sliding followed by diffusional grain boundary sliding during the heating. The strong effects of the surface and interfacial processes which are active during the SPS were highlighted.  相似文献   

12.
Chemically deposited lead sulfide (PbS) thin films were used as the semiconductor active layer in common-gated thin film transistors. The PbS films were deposited at room temperature on SiO2/Si-p wafers. Lift-off was used to define source and drain contacts (gold, Au) on top of the PbS layer with channel lengths ranging from 10 to 80 μm. The Si-p wafer with a back chromium-gold contact served as the common gate for the transistors. Experimental results show that as-deposited PbS are p-type in character and the devices exhibit typical drain current versus source-drain voltage (IDS-VDS) behavior as a function of gate voltage. The values of threshold voltage of the devices were in the range from −7.8 to 1.0 V, depending on the channel length. Channel mobility was approximately 10− 4 cm2V− 1 s− 1. The low channel mobility in the devices is attributed to the influence of the microstructure of the nanocrystalline thin films. The electrical performance of the PbS-based devices was improved by thermal annealing the devices in forming gas at 250 °C. In particular, channel mobility increased and threshold voltage decreased as a consequence of the thermal annealing.  相似文献   

13.
A procedure to dope n-type Cr2 − xTixO3 thin films is proposed. Besides doping the material, at the same time the method forms ohmic contacts on TixCr2 − xO3 films. It consists on the deposition of 10 nm Ti and 50 nm Au, followed by thermal annealing at 1000 °C for 20 min in N2 atmosphere. Ohmic contacts were formed on three samples with different composition: x = 0.17, 0.41 and 1.07 in a van der Pauw geometry for Hall effect measurements. These measurements are done between 35 K and 373 K. All samples showed n-type nature, with a charge carrier density (n) on the order of 1020 cm− 3, decreasing as x increased. As a function of temperature, n shows a minimum around 150 K, while the mobilities have an almost constant value of 11, 28 and 7 cm2V− 1 s− 1 for x = 0.17, 0.41 and 1.07, respectively.  相似文献   

14.
The optical properties of boron- and phosphorus-doped polycrystalline silicon films with light (~ 1 × 1016 cm−3), moderate (~ 5 × 1017 cm−3) and heavy doping (~ 1 × 1019 cm−3) were investigated in this work. The films were prepared by solid-phase crystallization of evaporated amorphous silicon films on borosilicate glass. Tauc-Lorentz models with one or two oscillators were used to model both reflection and transmission data collected by a spectrophotometer over the wavelength range of 400 nm-2000 nm. The results indicate that the crystal quality of the films is improved by phosphorus doping, while boron has a negligible impact on the crystal quality. The poly-Si films exhibit greater absorption than c-Si for visible wavelengths. This enhanced absorption is believed to be associated with defected a-Si material at the grain boundaries and intra-grain defects.  相似文献   

15.
High density Au nanostructures were fabricated using polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer on glass substrate for the preparation of electrode materials with good stability, high transparency and excellent conductivity. A 1 wt.% polymer solution in toluene was spin coated on glass substrate. Samples were baked for 48 h at 200 °C with a continuous flow of Ar. Patterned polymer film was obtained by removing the PMMA region through exposing ultraviolet irradiation and rinsing in acetic acid. Au thin films with several thicknesses were then deposited onto the patterned glass substrates by thermal evaporation or sputtering. Removing PS cylinders by sonicating in acetone resulted in Au nanopattern on glass substrates. The connecting gold film acts as conductor while the holes allow light pass through it and helps to be transparent. The transmittance with Au film thickness of 7 nm and 4 nm was found to be about 63% and 70%, respectively. The resistivity was in the range 10− 5 Ω cm-10− 6 Ω cm which is comparable with ITO (10− 3 Ω cm-10− 4 Ω cm).  相似文献   

16.
Transparent conductive amorphous Cd-In-Sb-O thin films were deposited on a flexible polyethylene naphthalate film by rf magnetron sputtering at room temperature. The large Hall mobility of ∼26 cm2 V−1 s−1 was observed on the films with carrier density >1020 cm−3. The carrier density varied from the order of 1020 to 1017 cm−3 with increasing the oxygen partial pressure. The Hall mobility reached up to ∼17 cm2 V−1 s−1, even at carrier density of ∼1017 cm−3. Flexible transparent filed-effect transistor was also fabricated using the Cd-In-Sb-O thin films as a channel layer and the device performance was investigated. The device exhibited a field-effect mobility of ∼0.45 cm2 V−1 s−1 and an on-off ratio of ∼102 at room temperature.  相似文献   

17.
B. Anwarzai  S. Luby  E. Majkova 《Vacuum》2009,84(1):108-720
Giant magnetoresistance and magnetostriction effects in a Co-based e-beam evaporated pseudo spin-valve (SV) with Au spacer were studied. Samples were deposited onto polyimide substrates. The effect of strain on samples was studied in bending configuration. The strain was changed in the interval of [−900 −× 10−5 + 1100× 10−5]. Resistance was measured in an external field of ±25 kA/m with current and field in the plane of the sample and angle between them from 0° to 90°. It was shown that the magnetoresistance ratio depends on the strain, changing from 2.5% at −900 × 10−5 to 2.9% at 1100 × 10−5 and crossing 2.7% at zero strain in a typical SV with parallel current and field configuration. With increasing angle between the current and the field the magnetoresistance value increases. The results are comparable with those obtained for similar structures deposited on Si substrates. Nevertheless, the plastic substrate represents a cheaper alternative to Si and the dynamic range of these sensors is increased due to the higher strain achieved.  相似文献   

18.
The strain rate sensitivity (m) was determined as a function of the strain rate using mechanical jump tests, on a nanostructured copper (grain size of 90 nm) prepared by powder metallurgy. The largest value is m = 0.050 ± 0.005, measured at 1 × 10−5 s−1. Apparent activation volume was derived giving an insight of the micromechanisms involved in the plastic deformation. Nanostructured face centred cubic metals exhibit elongation due to their strain rate sensitivity and the related delay in the localisation of the deformation. The present analysis brings elements of the micromechanism involved in the plasticity, providing with the guide to design a relevant ultra-fine grained architecture with improved ductility.  相似文献   

19.
The deformation behaviour of Zr65Cu20Fe5Al10 bulk metallic glass has been studied at room temperature under uniaxial compression conditions at the strain rate of 5 × 10−4 s−1 and performing jump tests for the strain rates (SR) ranging between 5 × 10−6 s−1 and 5 × 10−2 s−1. The alloy always shows the formation of shear bands and exhibits serrated flow. In the SR range of 5 × 10−6 to 5 × 10−3 s−1 absence of strain rate sensitivity within the experimental error is observed. However, when the SR changes from 5 × 10−3 s−1 to 5 × 10−2 s−1 the alloy exhibits a negative strain rate sensitivity of −0.0026. The number of shear bands on the side view appears to be correlated with the range of stress softening from the maximum stress to the stress at which the sample fails.  相似文献   

20.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号