首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
电化学氧化对炭纤维界面性质的影响   总被引:1,自引:0,他引:1  
对粘胶基炭纤维进行电化学氧化表面处理,对表面处理前后的炭纤维进行强力测试,分析表面处理条件对炭纤维强度的影响,通过测定炭纤维与几种浸润液的接触角,分析了电化学氧化表面处理对炭纤维浸润特性的影响,在电镜下观察表面处理前后炭纤维表面形貌的变化,并测其比表面积的变化,分析处理条件对其表面粗糙度的影响,通过炭纤维的拉曼散射,分析表面处理前后炭纤维表面微晶大小的变化,最后,对处理前后炭纤维的相关性能指标进行比较,分析其性能变化的机理及其性能变化对炭纤维复合材料界面粘结性能的影响。  相似文献   

2.
炭纤维阳极氧化法表面改性   总被引:1,自引:1,他引:1  
采用阳极氧化法对聚丙烯腈(PAN)基炭纤维进行表面改性,利用原子力显微镜(AFM)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和动态力学热分析(DMTA)对炭纤维表面改性效果进行了研究。研究结果表明,炭纤维经适当的阳极氧化表面改性后,表面的粗糙度和比表面积增大,表面羟基含量提高31%,羰基含量提高61%。表面改性炭纤维增强树脂基复合材料(CFRP)较未改性炭纤维CFRP,玻璃化温度(Tg)升高,损耗角正切峰值(tanδmax)降低,定量计算出的界面黏结参数A和a与CFRP的层间剪切强度(ILSS)所反映的炭纤维与树脂间界面黏结效果一致。采用适当的改性条件可使CFRP的ILSS提高25%,纤维抗拉强度仅损失5%。  相似文献   

3.
电化学表面处理PAN基炭纤维的表面性能研究   总被引:16,自引:5,他引:16  
以NH4HCO3为电解质对PAN基炭纤维进行了连续表面处理,并利用X射线光电子能谱(XPS)、X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)和自动电位滴定等方法,系统研究了电化学氧化反应后炭纤维表面石墨微晶尺寸的变化规律,推导出微晶宽度(La)、微晶厚度(Lc)与电流密度(J)之间存在线性天系式;同时,经电化学氧化处理后,炭纤维表面含氧官能团的摩尔分数增加8.54%,表面吸附水的摩尔分数增加5.34%,使其表面由憎液性变为亲液性,这有利于提高炭纤维增强树脂基复合材料(CFRP)的层问剪切强度(ILSS)。  相似文献   

4.
通过炭纤维电化学表面改性及动态固着代替静态固着,发现好氧池中处理后的聚丙烯腈(PAN)基炭纤维固着能力更好。对改性后炭纤维的表面形貌、表面官能团的种类和含氧官能团的含氧量进行了表征,并根据动、静态固着效果,分析了影响活性污泥固着的关键因素。SEM表面形貌观察表明经过电化学刻蚀后,炭纤维表面粗糙度的增加有利于形成活性污泥的固着。XPS分析显示,电化学表面改性后,C-C键、羧基、羰基等官能团影响活性污泥的表面固着效果,其中羧基的影响最为显著,另外,表面化学吸附氧对活性污泥固着有促进作用。  相似文献   

5.
采用循环伏安和恒流充放电试验研究了电化学氧化改性石墨毡对VO2 /VO 2电对的催化活性,并利用XPS、FT-IR、SEM、BET对改性前后石墨毡碳纤维表面O/C、官能团变化、形貌和比表面积进行比较.结果表明,电化学处理后,石墨毡表面的O/C比例由0.085增加至0.15,增加的主要是COOH官能团.石墨毡碳纤维表面被刻蚀,比表面积有所增大.采用改性的石墨毡作为电极组装的全钒液流电池在50mA/cm2电流密度下,电压效率达75.99%,电流效率达96.79%,经多次循环性能稳定.电极活性的提高归因于碳纤维表面COOH官能团数目的增加和比表面积的增大.  相似文献   

6.
采用两种上浆剂对聚丙烯腈(PAN)基炭纤维进行表面上浆,利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线元素分析(XPS)和反向气相色谱(IGC)研究了未上浆、上浆炭纤维的表面形貌、化学组成及纤维表面能,测试了未上浆和上浆炭纤维所制备复合材料的层间剪切强度(ILSS)并用SEM观察其断面形貌。结果表明,上浆后炭纤维表面变平滑,纤维表面n(O)/n(C)明显提高,含氧官能团(羟基、羧基)增加,炭纤维表面能降低。上浆后,复合材料的ILLS有所提高。  相似文献   

7.
采用对比方法,借助化学分析、表面形态分析及生物相容性表征技术等系统地研究了以活性炭纤维、表面改性活性炭纤维作为细胞固着化载体的表面特性及对微生物固着的影响.重点考察了纤维表面官能团、比表面积、润湿性等表面特性对微生物固着化的影响.研究结果表明:(1)炭纤维表面的吸附特性对微生物的初期固着起着重要的作用,具有高比表面积的活性炭纤维更易于微生物固着并挂膜.(2)炭纤维表面润湿性与某些酸性官能团的适量增加,有益于载体表面微生物的固着.(3)炭纤维尤其是活性炭纤维较市售有机高分子材料具有更加优异的生物相容性,前者的微生物固着化速率是后者的4倍~16倍.  相似文献   

8.
采用对比方法,借助化学分析、表面形态分析、微生物活性测定等技术首次系统地研究了以活性炭纤维、表面改性活性炭纤维作为细胞固着化用载体及载体表面特性对生物膜活性、菌液中微生物活性及增殖等的影响。重点考察了纤维表面官能团、比表面积、润湿性等表面特性对生物膜活性以及菌液中微生物活性及增殖等的影响。研究结果表明:(1)改善炭纤维表面的吸附特性有益于微生物固着及挂膜;增加活性炭纤维比表面积有利于提高其表面微生物的活性。(2)与其他有机高分子材料相比炭纤维可以促进微生物的生长。(3)炭纤维表面润湿性与某些酸性官能团的增加,有助于载体表面微生物的生长。  相似文献   

9.
分别采用脂肪醇聚氧乙烯醚磷酸酯、三乙醇胺和脂肪醇聚氧乙烯醚磷酸酯铵盐3种有机电解液对PAN基碳纤维进行电化学氧化改性,通过化学滴定法、单纤维断裂强度测试和场发射扫描电镜考察改性前后碳纤维表面酸性官能团含量、力学性能及表面形貌的变化规律,得到电化学改性的最佳条件:浓度5%(质量分数)的O_3PNH_4乳液为电解液,电流密度为2A/g,恒温50℃电化学氧化2min。针对改性处理后的碳纤维的表面性能,进行X射线光电子能谱和单纤维接触角测试。结果表明:以O_3PNH_4为电解液对碳纤维电化学改性,可以在不影响碳纤维力学性能的前提下,增加碳纤维表面的酸性官能团,提高碳纤维的表面能。  相似文献   

10.
采用对比方法,借助化学分析、表面形态分析及生物相容性表征技术等系统地研究了以活性炭纤维、表面改性活性炭纤维作为细胞固着化载体的表面特性及对微物固着的影响。重点考察了纤维表面官能团、比表面积、润湿性等表面特性对微生物固着化的影响。研究结果表明:(1)炭纤维表面的吸附特性对微生物的初期固着起着重要的作用,具有高比表面积的活性炭纤维更易于微生物固着并挂膜。(2)炭纤维表面润湿性与某些酸性官能团的适量增加,有益于载体表面微生物的固着。(3)炭纤维尤其是活性炭纤维较市售有机高分子材料具有更加优异的生物相容性,前者的微生物固着化速率是后者的4倍-16倍。  相似文献   

11.
采用阳极氧化法对炭纤维进行连续表面改性,并在其表面进行电镀镍处理,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析和酸碱滴定等方法研究了炭纤维阳极氧化前后的物理化学结构及对炭纤维电镀镍镀层的影响。结果表明:经过阳极氧化处理后,炭纤维表面的总酸性官能团提高约10倍;炭纤维拉伸强度降低先慢后快;阳极氧化可以改善镀层的生长过程,使镍镀层的生长由(V-W)模式转变为(F-M)模式,并且促使镀层晶粒细晶化,N i晶粒尺寸由14.5nm降为11.2nm,提高了镀镍炭纤维的抗氧化性以及镀层与炭纤维的结合力,阳极氧化后镀镍的炭纤维初始氧化温度较镀镍炭纤维提高了50℃。  相似文献   

12.
碳纤维阳极氧化法处理对复合材料界面性能的影响   总被引:19,自引:1,他引:18  
利用阳极氧化法对碳纤维进行表面改性处理,研究了碳纤维处理前后表面化学组成,纤维复丝拉伸强度和复合材料的层间剪切强度(ILSS)。结果表明,经阳极氧化处理碳纤维表面的含氧、含氮极性官能团数目增加,纤维复丝拉伸强度有所下降,复合材料的ILSS值提高。同时通过实验结果分析,阐明阳极氧化处理使复合材料界面性能改善的机理。  相似文献   

13.
高伟  赵广杰 《材料导报》2018,32(10):1688-1694
采用2~14mol/L的硝酸,在23~83℃下,对木质活性碳纤维(WACF)浸渍氧化改性1~8h后,通过Raman、XPS、水吸附和汞吸附等表征表面官能团的结构性能。结果表明,硝酸氧化能力强,可以增加氧原子浓度。酚基、醇基、羟基、羧基官能团随着硝酸浓度增大而增多,酚基和醇基随着浸渍时间的延长而减少,羟基随着浸渍时间的延长而显著增多。WACF表面的石墨化程度随硝酸浓度增大而提高,芯部石墨化程度整体提高但不随浓度梯度的变化而变化。硝酸改性后WACF的水吸附孔容降低,水吸附比表面积显著增加。WACF对HgCl2的吸附量随着硝酸浓度的增大、温度的升高和浸渍时间的延长而增大。以WACF的吸附能力为研究目标,通过对其形貌、晶体结构、表面官能团等进行表征,揭示影响水吸附、汞吸附性能的表面结构特性和化学特性的内在规律,研究结果对WACF功能化利用有指导意义。  相似文献   

14.
电化学改性PAN基碳纤维表面及其机理探析   总被引:7,自引:0,他引:7  
表面处理是高性能碳纤维制备的重要环节之一. 采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)等表征方法, 研究了改性聚丙烯腈(PAN)基碳纤维的表面状态, 探讨了电化学氧化法对碳纤维表面的改性机理. 研究结果表明, 在电化学的化学刻蚀作用下, 碳纤维表面薄弱外层被去除, 表面原有沟槽加宽加深, 表面粗糙度增大了1倍多;在电化学的化学氧化作用下, 碳纤维表面的活性官能团增多, (O1s+N1s)/C1s提高了9.7%. 并提出了电化学氧化同时改善了碳纤维的表面物理状态和表面化学状态的 “物化双效”机理.  相似文献   

15.
采用KOH活化法从大庆石油焦制得超级活性炭,而后对其进行微孔和中孔的调控。中孔调控采用热处理法,所得超级活性炭的中孔率在85%以上,比表面积大于1500m^2/g。同时对热处理后的超级活性炭进行表面硝酸氧化,引入部分含氧官能团。60min酸处理效果明显,羧基的增加量是20min酸处理的9倍。处理后的超级活性炭更适合作催化剂载体。微孔的控制采用化学气相炭沉积法(以苯为碳源),所得超级活性炭的微孔率从51%增加到87%。对CO2和CH4的分离能力从30mg/g提升到47mg/g,具有良好的筛分效果。  相似文献   

16.
用现有的微弧氧化方法制备的镁合金陶瓷膜厚度有限,且属于多孔结构。采用电流密度0.4 A/dm2,在AZ61镁合金表面制备了陶瓷膜;研究了不同微弧氧化时间(30,50,70,90,120,160 m in)对陶瓷膜微观性能的影响。结果表明:在电流密度一定的条件下,处理时间对陶瓷膜微观组织和性能有着较大的影响,随氧化时间延长,阳极电压、陶瓷膜厚度和粗糙度增大;孔隙率先增大后减小,最大值出现在70 m in时,陶瓷膜表面熔融物颗粒和孔隙尺寸增大且分布不均;50 m in时陶瓷膜耐蚀性最好。  相似文献   

17.
低温等离子体碳纤维表面处理技术研究   总被引:1,自引:0,他引:1  
张成  刘兆政  孙明娟  李雪 《材料导报》2018,32(Z1):294-296
采用低温等离子体法对碳纤维表面进行处理,并通过滴水试验、SEM、XPS测试处理效果。与阳极氧化法相比,低温等离子体法能更有效地改变碳纤维的表面性质。滴水试验表明经等离子体处理的碳纤维表面呈极性,与水的润湿性好;SEM测试结果表明,低温等离子体法处理的碳纤维表面沟槽比阳极氧化法的更多,前者表现出更强的表面修饰性;XPS测试结果表明,经等离子体和阳极氧化法处理后的碳纤维表面均含有羧基、羟基、羰基,低温等离子体处理后的碳纤维表面的极性官能团总含量为17%。  相似文献   

18.
电子束固化树脂基复合材料中碳纤维表面改性研究   总被引:2,自引:0,他引:2  
利用阳极氧化方法和偶联剂对碳纤维表面的物理和化学性质进行改性,采用原子力显微镜(AFM)和X射线光电子能谱(XPS)分析了碳纤维表面改性前后的形貌和化学成分的变化,利用Keaelble法计算了碳纤维的表面能。研究结果表明,阳极氧化改性的碳纤维表面粗糙度增加,表面活性;表面活性官能闭增多,表面能中极性成分增加明显,碳纤维表面引入的活性氮和化学吸附的碱性物质使电子束固化复合材料界面处的引发剂中毒,复合材料界面性能减弱,与电子束固化工艺相匹配的偶联剂在碳纤维与树脂基体之间形成化学桥,使电子束固化复合材料界面性能得到明显提高。  相似文献   

19.
利用循环伏安多重扫描法分析了不同电解质的氧化能力及其氧化特点,讨论了在表面氧化处理中不同电解液体系对高模高强碳纤维力学性能的影响,提出了适合高强高模碳纤维表面处理的工艺条件,并通过Raman光谱、XPS与SEM的表征,研究了电化学氧化对高强高模碳纤维表面结构及力学性能的影响。研究结果表明,与NH4H2PO4溶液相比,用NH4H2PO4与CH3COONH4复合的电解质溶液对碳纤维进行表面处理,能大幅度提高纤维表面含氧官能团,而且纤维表面sp2杂化碳原子相对含量也较多,在提高了碳纤维/环氧树脂复合材料层间剪切强度(ILSS)的同时,还较好地保持了高强高模碳纤维本体力学性能。当CH3COONH4与NH4H2PO4的物质的量之比为2:1时,碳纤维/环氧树脂复合材料的ILSS与未处理纤维相比提高了168%,而碳纤维拉伸强度却下降很小,此复合电解质溶液是一种较为理想的对高强高模碳纤维进行表面改性的电解质体系。  相似文献   

20.
XPS,AFM研究沥青基碳纤维电化学表面处理过程的机制   总被引:18,自引:5,他引:13       下载免费PDF全文
对各向同性沥青基碳纤维进行电化学氧化表面处理,用XPS,AFM分析了碳纤维表面含氧官能团和表面微观形貌的变化过程。实验结果表明:电化学氧化处理是表面碳及其含氧官能团逐步被氧化成羧基和CO2的过程。氧化处理首先是使碳纤维表面变得更光滑,持续氧化后才会出现沟槽,SEM的分辨率不足以表征碳纤维电化学氧化前后的表面形貌变化,而采用AFM可在纳米尺度上表征碳纤维在电化学氧化过程中的表面形貌变化。AFM和XPS的结合可表征碳纤维电化学氧化表面处理的进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号