首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma W  Song L  Yang R  Zhang T  Zhao Y  Sun L  Ren Y  Liu D  Liu L  Shen J  Zhang Z  Xiang Y  Zhou W  Xie S 《Nano letters》2007,7(8):2307-2311
We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order. We attribute these intriguing properties to the good and long interbundle connections. Moreover, by the help of an extrapolated Weibull theory, we verify the feasibility of reducing the interbundle slip by utilizing the long-range intertube friction and estimate the ultimate strength of macroscale SWNTs without binding agent.  相似文献   

2.
We have fabricated single phase Cu2ZnSnS4 (CZTS) films using a specially designed 3-stage electrochemical system. Sequential electrodepositon of constituent metallic layers was carried out on SnO2/F coated glass substrates using a platinum counter electrode and a saturated calomel reference electrode. Unique bath compositions were formulated for each of these constituents. Sequentially deposited tri-layer stacks were annealed in sulfur environment to get CZTS phase. Detailed structural, morphological and optical characterization experiments were performed using several techniques including x-ray diffraction, Raman and UV-visible spectroscopy, scanning electron microscopy and atomic force microscopy. All characterization experiments indicated that the films are single phase with a measured direct band gap of 1.5 eV.  相似文献   

3.
Transparent conducting single-walled carbon nanotube (SWCNT) films were fabricated using the spin coating technique. UV-ozone treated and poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) coated glass substrates together with SWCNT dispersed in 1,2-dichlorobenzene were used to promote the adhesion of SWCNT at room temperature. The produced film had a sheet resistance of 430 Ω/□ for 80% optical transparency at 550 nm. The spin coated SWCNT film after a post fabricated treatment in a mixer of isopropyl alcohol and nitric acid solution had a sheet resistance as low as 120 Ω/□ for 80% optical transparency at 500 nm. Besides reduction in sheet resistance, we obtained stable and strongly adherent SWCNT films on substrate that could serve as an alternative to transparent conducting oxides in display and optoelectronic applications.  相似文献   

4.
Park H  Brown PR  Bulović V  Kong J 《Nano letters》2012,12(1):133-140
In this work, organic photovoltaics (OPV) with graphene electrodes are constructed where the effect of graphene morphology, hole transporting layers (HTL), and counter electrodes are presented. Instead of the conventional poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) PEDOT:PSS HTL, an alternative transition metal oxide HTL (molybdenum oxide (MoO(3))) is investigated to address the issue of surface immiscibility between graphene and PEDOT:PSS. Graphene films considered here are synthesized via low-pressure chemical vapor deposition (LPCVD) using a copper catalyst and experimental issues concerning the transfer of synthesized graphene onto the substrates of OPV are discussed. The morphology of the graphene electrode and HTL wettability on the graphene surface are shown to play important roles in the successful integration of graphene films into the OPV devices. The effect of various cathodes on the device performance is also studied. These factors (i.e., suitable HTL, graphene surface morphology and residues, and the choice of well-matching counter electrodes) will provide better understanding in utilizing graphene films as transparent conducting electrodes in future solar cell applications.  相似文献   

5.
Ding  Er-Xiong  Hussain  Aqeel  Ahmad  Saeed  Zhang  Qiang  Liao  Yongping  Jiang  Hua  Kauppinen  Esko I. 《Nano Research》2020,13(1):112-120
Nano Research - Single-walled carbon nanotube (SWCNT) transparent conducting films (TCFs) are attracting increasing attention due to their exceptional optoelectronic properties. Toluene is a...  相似文献   

6.
H.K. Lin  R.C. Lin  C.H. Li 《Thin solid films》2010,518(24):7253-7257
Carbon nanotubes (CNTs) have potential as a transparent conductive material with good mechanical and electrical properties. However, carbon nanotube thin film deposition and etching processes are very difficult to pattern the electrode. In this study, transparent CNT film with a binder is coated on a PET flexible substrate. The transmittance and sheet resistance of carbon nanotube film are 84% and 1000 Ω/□, respectively. The etching process of carbon nanotube film on flexible substrates was investigated using 355 nm and 1064 nm laser sources. Experimental results show that carbon nanotube film can be ablated using laser technology. With the 355 nm UV laser, the minimum etched line width was 20 μm with a low amount of recast material of the ablated sections. The optimal conditions of laser ablation were determined for carbon nanotube film.  相似文献   

7.
We observed an interaction of single-walled carbon nanotube films with obliquely incident nanosecond laser radiation in visible and infrared regions generating unipolar voltage pulses replicating the shape of the laser pulses. The photoelectric signal significantly depends on the laser polarization and has maximum value at the laser beam incidence angle of ±65° and at the film thickness of 350 nm. The results are explained in the framework of the photon-drag effect.  相似文献   

8.
We report a facile chemical route for stabilizing a dispersion of carboxylated single-walled carbon nanotubes (SWCNTs) in a ZnO sol. The dispersion is stabilized via capping of the carboxyl groups on the SWCNT surface by a titania layer, which was confirmed by Fourier transform infrared spectroscopy and transmission electron microscopy. We also demonstrate that the conductivity of the films prepared from the SWCNT/TiO(x)/ZnO sol is dramatically enhanced by thermal treatment and that the thermal stability of the hybridized films with the ZnO sol is notably improved relative to that of a pristine SWCNT film. The structural and chemical changes of the fabricated films were characterized by Raman spectroscopy. As one application, it was presented that thermally treated SWCNT/TiO(x)/ZnO hybrid thin film sensors showed hydrogen sensing characteristics even at room temperature.  相似文献   

9.
A theory for the change in reflectance shown by conducting surfaces in the presence of a large electric field has been developed which gives a quantitative prediction of the magnitude and spectral position of the effect in gold, silver, antimony, GaAs and germanium. Measurements on thin films of Sn-doped In2O3, SnTe and GeTe have further confirmed the theory. These films show an electroreflectance effect which is dependent upon the method used for their preparation but which can be accurately predicted from the behaviour of the reflectance edge.Drude theory has been used for the optical properties of the surface which are controlled by both the normal free carriers and the extra ones induced by the electric field. These extra free carriers are assumed to be in a very thin enhanced layer. However, no detailed knowledge is required of this layer. A large effect in the infrared, which should be achieved with the fields that can be realized in electrolytic cells or in junction devices, is predicted for high mobility materials.  相似文献   

10.
Thin films of multi-walled carbon nanotubes (MWNTs) were prepared by spin coating on borosilicate substrates. The precursor solution was a dispersion of MWNTs in water containing hexadecyl-trimethyl-ammonium-chloride (HDTAC), a cationic surfactant. In order to enhance the adhesion of the films to the substrate, different concentrations of an adhesion promoter were added to the precursor dispersion. Parameters such as the optimum concentration of MWNTs in the networks, temperature of heat treatment, transparency in the visible range, hardness and adherence of the films were investigated. The structural, optical, electrical and mechanical characterization of the thin films is demonstrated in this work.  相似文献   

11.
Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05?[Formula: see text] and film transparency of 84?%T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130?[Formula: see text] at 69?%T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process.  相似文献   

12.
ZnO : Al (ZAO) films were deposited on glass substrates by a reactive mid-frequency sputtering system. The microstructural, electrical, and optical properties of ZAO films were investigated. It was observed that the polycrystalline film was (0 0 2n) textured with columnar structure. The minimum resistivity was 1.39×10–4 cm with a carrier concentration of 1.58×1021 cm–3 and a Hall mobility of 28.2 cm2 V–1 s–1, correspondingly with the c-axis nearly equal to the value of ZnO powder and the minimum mechanical stress therein. The average transmittance of 80.8% in the visible range and infrared reflectance of over 86% in the 1600–4400 cm–1 interval were obtained. The ZAO films were used as the transparent anodes to fabricate light-emitting diodes, and a luminance efficiency of 2.09 cd A–1 was measured at a current density of 5.38 A m–2.  相似文献   

13.
This paper describes a durable carbon nanotube (CNT) film for flexible devices and its mechanical properties. Films as thin as 10 nm thick have properties approaching those of existing electrodes based on indium tin oxide (ITO) but with significantly improved mechanical properties. In uniaxial tension, strains as high as 25% are required for permanent damage and at lower strains resistance changes are slight and consistent with elastic deformation of the individual CNTs. A simple model confirms that changes in electrical resistance are described by a Poisson's ratio of 0.22. These films are also durable to cyclic loading, and even at peak strains of 10% no significant damage occurs after 250 cycles. The scratch resistance is also high as measured by nanoscratch, and for a 50 μm tip a load of 140 mN is required to cause initial failure. This is more than 5 times higher than is required to cause cracking in ITO. The robustness of the transparent conductive coating leads to significant improvement in device performance. In touch screen devices fabricated using CNT no failure occurs after a million actuations while for devices based on ITO electrodes 400,000 cycles are needed to cause failure.These durable electrodes hold the key to developing robust, large-area, lightweight, optoelectronic devices such as lighting, displays, electronic-paper, and printable solar cells. Such devices could hold the key to producing inexpensive green energy, providing reliable solid-state lighting, and significantly reducing our dependence on paper.  相似文献   

14.
This paper reports an efficient solution dip coating method for the fabrication of highly transparent and conductive single-walled carbon nanotubes (SWCNTs) based thin films. The key to achieve this is properly preparing the polymer surfaces. In this paper we report a surface pretreatment approach of combining air plasma treatment and silane water solution rinsing for polyethylene terephthalate substrate. After this surface pretreatment, one dip (using a home-made dip coater) of SWCNT solution can yield a thin film of the sheet resistance less than 100 ohms/square (Ω/□) and transparency around 90% at the wavelength of 550 nm; while two dips can produce a thin film of the sheet resistance less than 80 Ω/□ and transparency around 80% at the wavelength of 550 nm. The carbon nanotube thin film performances achieved are close to those of the ITO coatings reported in the literature and the process developed is suitable for both mass production and lab sample preparations.  相似文献   

15.
Highly conducting and transparent thin films of tin-doped cadmium oxide were deposited on quartz substrate using pulsed laser deposition technique. The effect of growth temperature on structural, optical and electrical properties was studied. These films are highly transparent (78-89%) in visible region, and transmittance of the films depends on growth temperature. It is observed that resistivity increases with growth temperature after attaining minimum at 150 °C, while carrier concentration continuously decreases with temperature. The lowest resistivity of 1.96 × 10− 5 Ω cm and carrier concentration of 5.52 × 1021 cm3 is observed for the film grown at 150 °C. These highly conducting and transparent tin-doped CdO thin films grown via pulsed laser deposition could be an excellent candidate for future optoelectronic applications.  相似文献   

16.
Jun Liu 《Thin solid films》2010,518(14):3694-416
Bilayer In-doped CdO/Sn-doped In2O3 (CIO/ITO) transparent conducting oxide (TCO) thin films were prepared by depositing thin ITO films by ion-assisted deposition on CIO films grown by metal-organic chemical vapor deposition. The optical, electrical, and microstructural properties of these bilayer TCO films were investigated in detail. A low sheet resistance of ~ 4.9 Ω/□ is achieved for the CIO/ITO (170/40 nm) bilayers without annealing. With a significantly lower In content (20 vs. ~ 93 at.%) and a much higher conductivity (> 12,000 vs. 3000-5000 S/cm) than commercial ITO, these bilayer films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV) devices having a poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene) + [6,6]-phenyl C61 butyric acid methyl ester active layer. Device performance metrics in every way comparable to those of devices fabricated on commercial ITO are achieved, demonstrating that CIO/ITO bilayers are promising low-In content, highly conductive and transparent electrode candidates for OPV cells.  相似文献   

17.
综述了掺铝氧化锌(ZAO)透明导薄膜的化学法制备技术、及应用前景,重点介绍了溶胶-凝胶法制备ZAO薄膜的热处理条件、溶胶浓度、陈化时间、加水量以及稳定剂种类和用量等方面对薄膜结构和性能的影响.  相似文献   

18.
Abstract

Electrodes fabricated using commercially available silver nanowires (AgNWs) and single walled carbon nanotubes (SWCNTs) produced sheet resistances in the range 4–24 Ω □?1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.  相似文献   

19.
20.
The gallium doped zinc oxide has been one of the candidates for the transparent conducting oxide thin film electrode. It is not suitable to use a conventional light interference method to measure the thickness of the gallium doped zinc oxide thin film because the refractive index and extinction coefficient of the thin film is unknown during the optimization of the deposition conditions. In this paper, we report on the details of the film thickness program which uses the measured optical and electric properties and relationship between the plasma frequency and the optical constant of the film. The obtained film thickness of the prepared gallium doped zinc oxide thin film using the program was comparable with thicknesses measured by a cross-sectional analysis of the atomic force microscopy and the surface profiler. Moreover, the optical constant of refractive index and extinction coefficient of the film could also be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号