首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
SiC纤维增强Ti基复合材料的制备及性能   总被引:13,自引:1,他引:13  
用纤维涂层法制备了SCS-6DSiC/Ti-10-2-3复合材料,测定了所制备复合材料的拉伸性能,分析了影响复合材料力学性能的因素。研究表明,磁控溅射可获得与靶材化学成分基本一致的纤维涂层。复合材料中纤维分布的均匀性、涂层中的氧含量及纤维/基体处的元素扩散与界面反应对复合材料力学性能有较大影响。  相似文献   

2.
含钇聚碳硅烷制备碳化硅纤维(英文)   总被引:1,自引:0,他引:1  
将钇元素作为烧结助剂引入到聚碳硅烷(PCS)中制备含钇PCS。由含钇PCS制成SiC(OY)和SiC(Y)2种碳化硅纤维。对SiC(OY)纤维转变成SiC(Y)纤维的结构与相关特性的变化进行研究。SiC(OY)纤维的化学组成为SiC1.23O0.05Y0.005,纤维是无定型结构;SiC(Y)纤维含有大量的直径为50nm的β-SiC晶粒和少量的α-SiC晶粒,钇元素存在于SiC晶粒之间。SiC(OY)的拉伸强度为2.25GPa,断裂韧性为2.37MPa.m1/2;SiC(Y)的拉伸强度为1.61GPa,断裂韧性为1.91MPa.m1/2;SiC(Y)纤维比SiC(OY)纤维具有更好的热稳定性。  相似文献   

3.
碳化硅连续纤维增强钛基复合材料的研究进展   总被引:2,自引:0,他引:2  
周义刚  杨延清 《金属学报》2002,38(Z1):461-465
评述了SiC纤维增强钛基复合材料(Ti MMC)在航空发动机上的研究现状,指出Ti MMC具有优异的力学性能,因而有广阔的应用前景,而SiC/Ti的界面反应是影响Ti MMC性能的主要因素.还对开展Ti MMC研究提出了一些建设性的意见.  相似文献   

4.
通过乙酰丙酮钇与聚碳硅烷反应,得到分子量适中(Mw=2816)、GPC曲线呈双峰分布、具有优异可纺性的新型先驱体含钇聚碳硅烷,在控制纺丝温度和压力后,得到表面光滑、无裂纹、直径为5.3 μm的原纤维.讨论了原纤维直径对纤维制备工艺及性能的影响.降低纤维直径,有利于减少纤维缺陷,提高纤维强度和柔顺性.当纤维直径为6.20 μm时,抗张强度为3.52 GPa,且随直径减小,抗张强度呈线性增长趋势,为制备新型含异质元素耐超高温SiC纤维奠定了基础.  相似文献   

5.
《铸造技术》2015,(2):325-327
CMC-SiC是航空航天等高科技领域不可缺少的材料。先驱体浸渍热解(PIP)和化学气相渗透(CVI)是制备CMC-SiC较为理想的方法。采用PIP和CVI相结合的技术制备了CMC-SiC。结果表明,制备CMC-SiC的最好工艺是初始进行短期的CVI过程,随后再进行反复的PIP循环。  相似文献   

6.
在自行设计制造的直流电阻加热CVD装置上制备出C芯SiC纤维,C芯SiC比W芯具有更高的力学性能,更好的界面相容性,更低的密度,成为制备SiC/Ti基复合材料的最佳增强体。研究CH3SiHCl2-CH3SiCl3-H2-Ar体系中在C芯表面化学气相沉积SiC涂层工艺,考察沉积温度,[H2]/[silane],气流量,Ar气流量对化学气相沉积SiC涂层的结构、性能的影响。并对涂层表面形貌及结构成分进行SEM,XRD,raman,AES分析。结果表明:在温度1200℃,[H2]/[silane]=1.4,气体流量4.89L/min,稀释气体0.2L/min时,纤维拉伸强度最好为3392MPa。其中纤维的性能对沉积温度,[H2]/[silane]最敏感。  相似文献   

7.
通过IR,TG及XRD等手段对聚二甲基硅烷(PDMS)与聚氯乙烯(PVC)共裂解合成制备的纤维先驱体(PC-P4,PC-P50)裂解进行了研究。结果表明,在初始裂解队伍,主要为小分子硅烷逸出,PC-P5发生-Si-H和-Si-CH3的脱甲烷、脱氢反应而导致交联程度的增加;而在PC-P50中,除了发生上述反应外,还存在分子内和分子间稠环芳烃结构的脱氢缩率。随裂解温度进一步的提高,PC-P5表面为脱氢,脱甲烷的无机化过程,裂解产物从有机物转变为存在部分微晶的无机结构,裂解温度继续提高后,Si-C-O玻璃相和富余碳反应使SiC晶粒尺寸增加,并伴有CO气体的放出。  相似文献   

8.
生坯制备参数对反应烧结碳化硅显微组织与性能的影响   总被引:3,自引:0,他引:3  
研究了反应烧结碳化硅陶瓷的显微组织和性能与生坯碳含量、成型压力以及碳粉粒度的关系,结果表明:生坯成型压力与生坯含碳量存在最佳匹配、原则,陶瓷性能随之降低,对于一定粒度的碳化硅粉而言,加入到生坯中碳粉粒度应小于一定尺寸,否则,陶瓷的断裂强度和密度将随碳粉应变的增大而降低。  相似文献   

9.
碳化硅磨料在陶瓷磨具中的氧化性能对碳化硅细粒度陶瓷磨具的黑心有直接的影响,也是行业一直关注的问题;本文通过试验、结合化学动力学计算和扫描电镜分析,对碳化硅磨料在陶瓷磨具中的氧化性能进行了初步的研究。试验的计算结果表明:碳化硅磨料在现行的烧成制度下,氧化反应是不可避免的,氧化产物SiO2也不会在SiC磨料表面形成致密保护层;碳化硅磨具产生黑心原因关键在于陶瓷结合剂的性质。陶瓷结合剂的完全烧结温度若略高于烧成温度或能始终保持结合剂的适当开口气孔率,就可能避免产品黑心的产生。  相似文献   

10.
连续碳化硅长丝纤维是目前具有最高比强度和最高比模量,以及高热稳定性的人造纤维。其生产技术发展经历了从高含氧量到超低含氧量,从微量元素掺杂到多种元素掺杂复合连续碳化硅长丝纤维几个关键技术阶段。连续碳化硅长丝纤维生产的4个关键技术工艺过程包括:有机硅烷小分子单体经化学或催化聚合形成有机聚硅烷(Polysilanes,PS)的聚合过程;PS的粘溶液或熔浆在惰性气氛中机械纺丝制造PS原丝的工艺过程;PS原丝经过在惰性化学气氛中控温化学转化形成聚碳硅烷(Polycarbosilanes,PCS)纤维及同时发生交联的热化学转化过程;PCS纤维在惰性以及/或者反应性气氛中高温热交联结晶化形成终烧碳化硅纤维的高温热化学转化过程。熟悉并完全掌握每一个工艺过程的技术关键,才能有效选择合适的工艺及生产装备,生产出高强度高模量连续碳化硅长丝纤维,为我国航空航天以及高端制造业提供高品质连续碳化硅长丝纤维材料。  相似文献   

11.
目的提高碳化硅纤维的高温力学性能。方法以含铍聚碳硅烷为原料,采用先驱体转化法制备含铍碳化硅纤维,对含铍碳化硅纤维进行SEM和XRD分析,并对其常温和高温力学性能进行测试。结果制得的纤维直径在20~30μm,表面光滑,无明显缺陷。纤维常温拉伸强度为600~700 MPa,与商品级碳化硅纤维有较大差距,但在空气中800℃加热2 h后,拉伸强度提升30%以上。在空气中1100℃加热2 h后,纤维表面形貌无明显改变,拉伸强度仍能保持90%以上。在空气中1200℃加热2 h后,纤维表面出现裂纹,导致其拉伸强度明显下降。普通Si C纤维的拉伸强度随着空气热处理温度的升高而不断下降,并且在相同的空气热处理温度下,其强度保留率明显低于含铍碳化硅纤维。在空气热处理过程中,含铍碳化硅纤维表面生成了Si O2层,而普通碳化硅纤维却没有生成Si O2。结论含铍碳化硅纤维在空气中具有优异的耐高温性能,原因是Be元素促使纤维表面的Si C氧化生成了Si O2保护层,一方面阻止了纤维内部材料被进一步氧化,另一方面对纤维表面起到了加强作用。  相似文献   

12.
超细不锈钢纤维的制备和性能   总被引:10,自引:0,他引:10  
研究了超细不锈钢纤维的制备工艺和产品性能,结果表明:集束拉拔法能够制备超细不锈钢纤维,但由于加工过程的不均匀变形导致纤维丝呈不规则圆形。在相同的真应变条件下,12μm,8μm和6μm纤维的单丝断裂强力随真应变的增加而增加,抗拉强度随着纤维丝径的减小而显著增加,在12μm处达到极大值后又随着纤维丝径的减小而显著降低。3种规格的纤维表面都存在颗粒状的碳化物,碳化物在拉伸过程中随着纤维的减径而被带到表面或近表面处,它不仅使纤维芯丝严重不均匀,还会导致纤维沿颗粒处损坏至断裂,这也是8μm和6μm纤维抗拉强度相对低的原因。  相似文献   

13.
以碳纳米管(CNTs)、碳化硅(SiC)粉体、锌(Zn)粉和CuSO_4·5H_2O为主要原料,用化学镀的方法制备CNTs /Cu复合粉体,再采用非均相沉淀法制备CNTs/SiC/Cu复合粉体.在750 ℃、100 MPa的制度下进行真空热压烧结后制得CNTs/SiC/Cu复合材料,其中Cu的含量(体积分数,下同)为70%,CNTs的含量(体积分数, 下同)分别为0,3%,5%,8%,12%.利用XRD、SEM分析样品的物相组成和显微结构;利用阿基米德排水法、显微硬度计、三点弯曲法测试了复合材料的密度、显微硬度和抗弯强度.结果表明,随着碳纳米管含量的增加,CNTs/SiC/Cu复合材料的密度、显微硬度和抗弯强度等性能发生相应变化,其中,抗弯强度呈现逐渐升高趋势.与未添加碳纳米管的30SiC/70Cu复合材料相比,添加12%CNTs的12CNTs/18SiC/70Cu 样品,抗弯强度提高了21.45 MPa.  相似文献   

14.
用扫描电镜和X射线衍射仪观察和分析了熔融快淬法制备的FeCuNbSiB铁基非晶纤维,对影响制备的工艺因素进行了研究,测量了纤维制备态和退火态的电阻率和比饱和磁化强度。结果表明,用快淬法制备的纤维处于非晶态,制备态纤维的电阻率比经300、450、500℃加热1h退火处理后的高;随退火温度升高,纤维的电阻率和比饱和磁化强度减小,体积分数增大,非晶相减少。纳米晶相的形成明显影响纤维饱和磁化强度的变化。  相似文献   

15.
王铎  翟宝清 《铸造技术》2007,28(5):698-701
用化学合成法制备用于电子封装中的聚酰亚胺基复合介电材料,并通过透射电镜、红外光谱仪对复合薄膜材料组织观察、结构表征.结果表明,聚酰亚胺基复合材料实际是一种共聚物,属于分子杂化复合材料,是纳米碳化硅小分子均匀分散在大分子聚合物基体中的复合材料体系,介电常数较低,平均值为ε=2.3,最低达ε=2.0,吸水性也较低.  相似文献   

16.
分别采用酚醛和沥青为先驱体,在连续SiC纤维表面进行涂层制备,采用SEM、表面能谱等分析手段系统研究了涂层组成、结构及其对SiC纤维力学性能的影响.以含碳涂层的SiC纤维和聚碳硅烷(PCS)为原料通过先驱体转化法(PIP)制备SiCf/SiC复合材料,对其微观结构及性能进行了表征.结果表明,经过涂层处理后,在连续SiC纤维表面涂敷了一层无定形碳,纤维表面缺陷得到改善,抗拉强度有所提高.采用碳涂层SiC纤维制备SiCk/SiC复合材料后,断裂韧性明显提高.通过涂层处理有效地改善了SiCf/SiC复合材料的韧性.  相似文献   

17.
采用机械搅拌和超声分散相结合的方法制备出了纳米SiC颗粒增强ADC12铝合金基复合材料,并对制备出的复合材料进行微观结构分析和力学性能测试.结果表明,与基体合金相比,当纳米SiC颗粒的含量为2.0%时,所制得的复合材料的抗拉强度、弹性模量、断面收缩率及硬度分别提高23%、43%、160%和7.4%.用扫描电镜对试样拉伸断口的形貌和SiC颗粒的分散情况进行观察,发现纳米SiC颗粒在基体内呈均匀的弥散分布,没有发现大的团聚.同时,纳米SiC颗粒的均匀分布起到了阻碍或者阻止裂纹产生和扩展的作用.  相似文献   

18.
降低SiC纤维中的氧含量是提高其耐温性能的主要途径之一.本文以高分子量聚碳硅烷(PCS)为原料,通过干法纺丝、高温烧成等工艺,制得了氧含量为3.41%(质量分数)的SiC纤维.通过TG-DTA,IR等手段分析了干纺PCS纤维的无机化过程,并通过元素分析、XRD和SEM等手段,对纤维的结构、组成和耐高温性能进行了分析.结果表明干纺PCS纤维烧成时,存在着二甲苯残留溶剂的挥发、自交联反应和无机化等复杂的过程,制备的SiC纤维在1000℃的空气中灼烧1 h后强度保持率约为91%.  相似文献   

19.
以废弃的棉短绒和酚醛树脂为原料,通过模压成型,固化,碳化和渗硅制备出微观结构均匀的多孔碳和多孔碳化硅.通过SEM照片可以看出,由棉短绒纤维的杂乱排列和碳化时不同的收缩率产生了相互连通不规则的孔,在多孔碳化硅结构中也得以保留.经过三点弯曲测试,多孔碳化硅的气孔率随着排硅时间的增加而增加,强度和韧性随着捧硅时间的增加而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号