首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
串行流化床生物质气化制氢试验研究   总被引:2,自引:0,他引:2  
基于串行流化床生物质气化技术,以水蒸气为气化剂,在串行流化床试验装置上进行生物质气化制氢的试验研究,考察了气化反应器温度、水蒸气/生物质比率(S/B)对气化气成分、烟气成分和氢产率的影响。结果表明:在燃烧反应器内燃烧烟气不会串混至气化反应器,该气化技术能够稳定连续地从气化反应器获得不含N_2的富氢燃气,氢浓度最高可达71.5%;气化反应器温度是影响制氢过程的重要因素,随着温度的升高,气化气中H_2浓度不断降低,CO浓度显著上升,氢产率有所提高;S/B对气化气成分影响较小,随着S/B的增加,氢产率先升高而后降低,S/B的最优值为1.4。最高氢产率(60.3g H_2/kg biomass)是在气化反应器温度为920℃,S/B为1.4的条件下获得的。  相似文献   

2.
流化床生物质气化工艺研究   总被引:7,自引:0,他引:7  
白轩 《新能源》1998,20(5):19-24
  相似文献   

3.
生物质在流化床中的气化实验   总被引:3,自引:0,他引:3  
肖艳京  马隆龙 《节能》1999,(10):7-9
笔者在意大利Aquila 大学同该校Rapagna 副教授和伊朗博士生Jand Nader 以中国某木材加工厂的加工剩余物木屑为原料,用小型流化床进行了空气气化实验。反应温度控制在800 ℃,气化效率可达70 % ,气化气热值在6 ~12 MJ/Nm 3 。随着空气供给量的增加,气化气热值降低而产气率增加。  相似文献   

4.
生物质气化制氢研究现状   总被引:1,自引:0,他引:1  
重点讨论生物质催化气化制氢的基本原理和基本过程,阐述生物质催化气化制氢、超临界水中生物质催化气化制氢、等离子体热解气化制氢的研究现状,指出生物质气化制氢的广阔前景。  相似文献   

5.
串行流化床生物质气化制取富氢气体模拟研究   总被引:8,自引:1,他引:7  
利用串行流化床技术将生物质热解气化和燃烧过程分开,气化反应器和燃烧反应器之间通过灰渣进行热量传递,实现了自供热下生物质气化制氢.利用Aapen Plus软件模拟制氢过程,通过比较单反应器生物质气化的模拟结果和实验结果,验证了模拟研究的可行性.重点研究串行流化床中非催化气化与CaCO3作用下的气化过程,探讨了气化温度、蒸汽与生物质的质量配比(S/B)对制氢的影响,为今后开展生物质气化制氢试验提供了理论参考.结果表明:对应不同气化温度,S/B都存在一个最佳值,且随着温度升高其值减小.当气化温度低于750℃时,添加CaCO3可大幅提高氢产率,气化温度为700℃且在S/B约为0.9时氢产率最大,达43.7 mol·(kg生物质)-1(干燥无灰基),比同温度下非催化气化提高了20.3%.随着气化温度升高,CaCO3促进作用减弱.  相似文献   

6.
按所得产品不同,可将生物质气化技术分为制氢、发电和合成液体燃料3大类。文章介绍了生物质流化床水蒸气气化制氢、催化气化制氢和超临界水气化制氢的工艺特点;分析了生物质流化床气化发电的技术、经济可行性;简述了生物质流化床气化合成液体燃料的研究现状;指出气化产出气化学当量比调变、焦油去除问题和合成气净化是生物质流化床气化技术应用的主要瓶颈,认为定向气化是今后研究的主要方向。  相似文献   

7.
生物质流化床催化气化制取富氢燃气   总被引:11,自引:3,他引:11  
以流化床和固定床为反应器,以制取富氢燃气为目标,对生物质催化气化进行了研究。实验所用催化剂为白云石和镍基催化剂。白云石作为流态化催化剂在流化床内使用;镍基催化剂在流化床出口的固定床反应器内使用。重点研究了不同固定床反应条件对气体和氢产率的影响。固定床反应条件为:温度,650~850℃,催化剂质量空速,2.68~10.72h^-1。在催化反应器出口,H2体积平均含量超过50%,CH4含量降低50%左右,C2组分降低到1%以下。在实验条件范围内,最高气体产率可以达到3.31Nm^3/kg biomass,最高氢产率可达到130.28g H2/kg biomass,对镍基催化剂350min的寿命测试表明,该系统具有较稳定的操作性能。  相似文献   

8.
生物质流化床气化制取富氢燃气的研究   总被引:17,自引:7,他引:17  
以流化床为反应器,对生物质空气-水蒸汽气化制取富氢燃气的特性进行了一系列实验研究。在本实验中,气化介质(空气)从流化床底部进人反应器,水蒸汽从进料点上方通人反应器。在对实验数据进行分析的基础上,探讨了一些主要参数如:反应器温度,水蒸汽/生物质比率S/B(Steam/Biomass Ratio),当量比ER(Equivalence Ratio)以及生物质粒度对气体成分和氢产率的影响。结果表明:较高的反应器温度,适当的ER和S/B(在本实验研究中分别为0.23,2.02),以及较小的生物质颗粒比较有利于氢的产出。最高的氢产率:71gH2/kgbiomass是在反应器温度为900℃,ER为0.22,S/B为2.70的条件下取得的。  相似文献   

9.
本文针对废弃生物的能量再收进行讨论,并用实验测试数据加以论证。在对有代表性的木屑,砻糠、杂草和城市生活垃圾等生物质进行了流化床的冷态模拟和φ200炉子的热态气化试验,得到了满意的结果。主要结论为:固体生物质废料经适当粉碎干燥后即可以用该化床进行资源回收;气化物料度<200mm(单尺度),水份含量<30%时可制得约5μJ/μ~3的粗煤气;采用流化床气化处理法进行资源回收不仅具有废料处理量大(强度达1.5T/μ~2H_r)而且回收的资源能量品位高是最方便实用的气体燃料。 显然,通过本文的研究结果,可以看到目前普通存在的城市垃圾,废弃生物处理的有效手段——流化床处理法的诱人、广泛和美好的前景。  相似文献   

10.
中型流化床中的生物质气化实验研究   总被引:13,自引:0,他引:13  
以空气为气化介质,在中型流化床反应器上进行了生物质(木屑)气化实验研究。考察了当量比ER(0.20~0.34)、气化温度(670~820℃)对气化结果的影响,初步探讨加入二次风对气化的影响。在实验研究的条件范围内,煤气热值在5650~6665kJ/m3范围内变化,生物质产气率在1.51~2.26m3/kg之间变化,碳转化率在74.3%~90.8%之间变化,气化效率达到61.8%~78.1%;加入适量二次风可以提高气化效率和碳转化率,减少焦油含量。实验结果表明:此流化床气化炉当气化温度在720~770℃之间,当量比ER在0.24~0.28之间时,气化效果最好,此时煤气热值可达到6400~6600kJ/m3,产气率为1.75~1.95m3/kg,碳转化率为83%~89%,气化效率高达71%以上。  相似文献   

11.
基于欧拉多相流模型,自编化学反应子模型,通过建立生物质流化床气化动力学模型,对某实验室规模的流化床生物质气化炉进行了数值模拟,研究了蒸汽与生物质的质量比(mS/mB)、生物质粒径对产气组分、蒸汽分解率等的影响.结果表明:mS/mB增大,H2体积分数先上升后保持不变,而CO和CH4的体积分数先下降后几乎不变,蒸汽分解率下降;生物质粒径减小有利于气化过程,使CO和H2的体积分数明显上升;计算结果和试验结果基本吻合,表明基于欧拉多相流的动力学模型能对流化床中生物质的气化进行比较准确的模拟.  相似文献   

12.
生物质气化影响因素分析   总被引:9,自引:1,他引:8  
阐述了生物质定义、特点及生物质气化原理,综述了生物质在流化床气化中,气化剂、原料粒径、温度、压力、原料前处理等操作条件对生物质气化产品组成的影响,讨论了煤与生物质共气化的协同作用,指出了生物质流化床气化的技术关键。  相似文献   

13.
生物质能流化床转化利用技术实践   总被引:7,自引:1,他引:7  
大力开发生物质能的流化床转化利用技术 ,将我国丰富低品位的生物质能转化为高品质的电、热、气和油等 ,不仅可以节省能源和调整能源结构 ,还能有效应对由于CO2 的大量排放而引起的全球变暖与温室效应等问题。介绍了我国生物质能的资源状况及利用情况 ,分析了几种生物质能流化床转化利用技术 ,特别是简要地介绍了浙江大学在生物质能流化床转化利用方面所进行的部分工作和取得的成绩  相似文献   

14.
介绍了国内外生物质发电现状及国内存在问题,指出采用流化床或低倍率循环流化床燃烧生物质发电比较合适国内推广应用。  相似文献   

15.
生物质气化制取富氢燃气的实验研究   总被引:3,自引:0,他引:3  
将生物质气化过程和催化裂解过程融合于一体,在下吸式气化炉中对生物质气化制取富氢燃气的特性进行了一系列实验研究,考察了一些主要参数变量,如温度(700~900℃)、水蒸气/生物质比(0~2.67)、生物质粒径(<1mm)以及白云石等对气化结果的影响。在实验研究的条件范围内,生物质产气中氢含量最大为52.47%,产氢率在0.12~0.90m~3/kg范围内变化,产气率在0.59~1.72m~3/kg范围内变化,产气低位热值在8795~21113 kJ/m~3范围内变化。  相似文献   

16.
建立了一套能同时实现高温高压和快速加热的实验设备和研究方法,使煤气化反应动力学基础研究能在与实际气流床煤气化炉相近的条件下进行.研究表明,当CO2体积分数相同时,最大CO生成速度随压力的升高而升高;煤焦的气化反应速度随全压的升高而升高.即使全压和CO2体积分数不同,只要CO2的分压、温度等其他条件相同,煤焦的气化反应速度就基本上一致.说明全压和CO2体积分数对煤焦气化反应速度的影响可以归纳为CO2分压的影响.高温快速加热条件下,除了温度以外,CO2分压是影响煤气化特性的重要因素.  相似文献   

17.
生物质流化床燃烧/气化的烧结特性与机理综述   总被引:1,自引:0,他引:1  
流化床燃烧/气化是生物质高效规模化能源利用的主要方式之一,由于生物质在较低温度下燃烧/气化时就容易发生床料烧结,影响了系统安全稳定运行,阻碍了能源利用效率的提高.系统地归纳了不同生物质在不同种类床料状态下燃烧/气化时烧结所需的特征温度,分析了生物质种类、碱金属含量、反应气氛与烧结温度之间的联系,结合相关研究,对生物质的烧结机理进行了分析和总结,对烧结温度预测方法和模型的优缺点进行了剖析和比较,对生物质燃烧/气化烧结机理进一步研究、预测模型的优化等提出了积极的建议,以期为相关研究的深入开展和生物质能规模化利用水平的提高提供有意义的参考.  相似文献   

18.
生物质气化制氢的模拟   总被引:1,自引:0,他引:1  
以秸秆为研究对象,利用Aspen P lus软件建立气化反应器模型,对生物质气化制氢进行模拟计算.探讨不同反应条件,包括气化温度、生物质与蒸汽质量配比以及催化剂对富氢气体成分的影响.计算结果表明,未加催化剂条件下,采用生物质蒸汽气化技术可获得体积分数为6000/以上的富氢燃料气,增大蒸汽与生物质质量配比有利于氢气产率的提高;添加CaO、MgO催化剂可较大幅度地提高氢气产率,氢气体积分数最大可达到9400/,其中CaO对生物质气化制氢过程的催化作用非常显著.  相似文献   

19.
高嘉楠  方小里 《锅炉制造》2020,(2):36-37,40
生物质作为一种可再生的洁净能源,其气化技术得到大力发展。本文对生物质气化的基本原理及气化工艺类型进行了简要介绍,同时阐述了主要气化炉类型的工作原理及优缺点,如固定床原料适应性广,但难以大型化,流化床气化效率高但结构复杂;并对气化炉的特性进行浅析,对生物质气化工程的设计及运行具有指导意义。  相似文献   

20.
建立了基于Ca循环的生物质气化制氢模型,包括气化单元和燃烧单元.气化单元包括热解与重整2个模块,通过快速热解试验获得初始热解模块的结果,并进行了压力和温度的修正计算;通过调整二次热解时进入燃烧炉的焦炭量,使得燃烧炉能够达到煅烧碳酸钙的温度,剩余焦炭进入气化炉;重整模块以及燃烧单元采用Gibbs自由能最小化原理进行计算.通过控制气化反应平衡趋近温度得到系统加压时非平衡态工况的结果,并与气化炉试验结果进行了对比验证.考察了压力、温度、n(Ca)/n(C)和n(H2O)/n(C)对氢气体积分数与产量、碳酸化率和碳酸钙煅烧率等的影响.通过优化,得到了最优的氢气产量为106.4 g/kg,体积分数可达94.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号