首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
SAPO-34分子筛上丁烯催化裂解制乙烯和丙烯   总被引:3,自引:1,他引:2  
以SAPO-34分子筛为催化剂,在固定流化床装置上研究了丁烯裂解的反应规律和结焦规律。实验结果表明,反应温度对丁烯裂解产物分布影响较大,丁烯转化率、乙烯和丙烯收率均随反应温度的升高而增加,乙烯和丙烯总选择性(双烯选择性)随反应温度的升高先增加后降低,适宜的反应温度为580~600℃;延长停留时间可提高丁烯转化率及乙烯和丙烯总收率(双烯收率),但停留时间过长会增加二次反应,降低乙烯、丙烯的选择性,尤其是丙烯;水蒸气对丁烯裂解有一定的促进作用,可使丙烯收率明显增加。与ZSM-5分子筛相比,SAPO-34分子筛的稳定性较差,但双烯选择性较高,在运行初期可获得与ZSM-5分子筛相当的双烯收率。SAPO-34分子筛催化丁烯裂解时,在运行初期及高温下生焦速率快,积碳显著影响SAPO-34分子筛的酸性。  相似文献   

2.
介绍中石化洛阳工程有限公司C4馏分催化裂解生产烯烃的工艺技术开发情况。在中型试验装置上对C4馏分催化裂解生产烯烃的工艺条件进行了考察,结果表明,在600~650℃的反应温度下,丁烷的转化率为33%~52%,丙烯+乙烯的选择性为25%~45%,甲烷的选择性为8%~19%;在570℃的反应温度下,丁烯的转化率及乙烯、丙烯的选择性均较高,丙烯+乙烯的单程收率达到48.38%;如果将未反应的烯烃及生成液体产物中的烯烃进行循环裂解,乙烯+丙烯的收率可高达69%;在600℃的反应温度下,丁烯裂解生成的汽油中,芳烃的质量分数为87.6%,三苯(苯、甲苯、二甲苯)的质量分数为67.59%。  相似文献   

3.
在40 L固定流化床反应装置上开展了不同复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃反应评价试验,以考察工艺条件对原料转化率、乙烯及丙烯选择性和收率、丙烯/乙烯(摩尔比,下同)、以及副产物混合C4、氢气、甲烷收率的影响。结果表明:以双烯烃总收率为指标,轻烃原料族组成的催化裂解制低碳烯烃性能从高到低排序为:正构烷烃、异构烷烃、环烷烃、芳香烃;在轻烃原料R中添加异辛烷,虽然能显著提高催化裂解时的轻烃原料转化率及产物中的丙烯/乙烯,但产物中的乙烯及丙烯收率、双烯烃总收率均略有降低;含添加10%(质量分数)异辛烷的复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃较佳反应条件为:液时空速为0.64 h-1,氮气、汽提水流量分别为0.50,1 L/min,反应温度为665℃及反应压力为40 kPa;在此条件下,复合轻烃原料的转化率为80.11%,目标产物中的双烯烃总收率、乙烯及丙烯收率分别为50.03%,43.50%,丙烯/乙烯为0.73。  相似文献   

4.
罗姆斯 (ABBLummusGlobal)公司开发了从乙烯和丁烯生产丙烯的烯烃转化技术 (OCT)。在该工艺中 ,乙烯进料(包括循环乙烯 )和丁烯进料 (包括循环丁烯 )进入固定床易位反应器。催化剂促使乙烯和 2 丁烯反应生成丙烯 ,同时使 1 丁烯异构化为 2 丁烯。来自易位反应器的物流分馏得到高纯度聚合级丙烯 ,乙烯和丁烯循环使用 ,混合C4 进料可能含有大量异丁烯 ,但不影响OCT工艺性能。该工艺对丙烯的选择性大于 98% ,正丁烯的转化率为85 %~ 92 %。乙烯和丁烯进料可来自蒸汽裂解装置或炼油厂。丁烯也可来自乙烯二聚。对于 30 0…  相似文献   

5.
日本旭化成化学公司研究人员日前开发出新型沸石催化剂。这种催化剂可以实现丁烯裂解高转化率制乙烯和丙烯,并且可以在较长时间内保持较高的活性。新型催化剂采用含钠的氢离子交换型ZSM-5/SiO2沸石。沸石用硝酸银  相似文献   

6.
轻烃催化裂解具有裂解温度低、产物分布可调以及可多产丙烯等优点而备受关注。采用等量浸渍法制备了一系列不同金属改性的ZSM-5分子筛催化剂,在固定床微型反应器中评价了其催化正己烷裂解性能。实验结果表明,4种不同金属(Ni,Fe,Cr,Co)改性的ZSM-5分子筛催化剂上正己烷转化率都显示出下降趋势,但下降幅度不同,而且乙烯、丙烯选择性随不同金属的引入变化规律也不同。其中,Fe和Cr的引入对正己烷转化率的影响较小,而Co的引入导致正己烷转化率的下降幅度更大。就丙烯和乙烯选择性而言,随着金属的引入都有所增加。Co的添加对丙烯选择性提高幅度最大。因此,需要更高丙烯选择性时,可以牺牲正己烷转化率获得更多丙烯。  相似文献   

7.
钼负载型催化剂上乙烯与2-丁烯歧化制丙烯   总被引:11,自引:5,他引:6  
通过研究不同载体负载Mo催化剂的乙烯和2-丁烯歧化制丙烯的反应性能,考察K、Mg和La等金属助剂和P、B、F和Cl等非金属助剂对Mo基催化剂活性和稳定性的影响,表明K、Mg和La有利于提高催化剂的稳定性。在此基础上,研制出在较低反应温度下具有较高活性和选择性的Mo/Z催化剂,在固定床反应器、60~70℃、1 0MPa和乙烯/2-丁烯摩尔比1 5~3的条件下,MgMo/Z上的乙烯和2-丁烯歧化反应连续进行120h,2-丁烯转化率为60%~90%,丙烯选择性达90%以上。  相似文献   

8.
分析了典型焦化汽油烃类组成特点,重点研究焦化汽油催化裂解反应过程中反应转化率以及低碳烯烃的产率和选择性的主要影响因素。结果表明,催化裂解反应条件下焦化汽油转化率较低,提高反应温度是提高低碳烯烃产率的有效手段,但是目标产物的选择性变化不大;采用高选择性的催化剂可以在提高乙烯和丙烯产率的同时提高其选择性,并达到少产丁烯的目的。焦化汽油的正构烷烃转化程度低,尤其是C5~C7正构烷烃转化程度不足60%,是因其分子碳链短,所形成的正碳离子的β断裂反应不易发生所致。  相似文献   

9.
分别采用磷改性、钙改性和磷-钙同时改性的方法处理成型后的ZSM-5分子筛,得到ZSM-5分子筛催化剂,并研究了催化剂的结构,以及评价了ZSM-5分子筛催化剂对异丁烯、1-丁烯和混合丁烯的催化裂解性能。实验结果表明,催化剂表面的强酸位和弱酸位都能使丁烯裂解,但强酸位还会引发氢转移和芳构化副反应的发生;3种改性方法都可以有效减少催化剂表面的酸性位,提高乙烯和丙烯的选择性,且乙烯和丙烯的产率与丁烯原料的异构体种类无关;与钙改性相比,磷改性和磷-钙同时改性对催化剂性能的改善更显著;在温度为500~560℃时,升高温度可以促进裂解反应,有利于生成乙烯和丙烯;在540℃、0.05 MPa、重时空速16 h~(-1)的条件下,丙烯产率大于29.5%。  相似文献   

10.
采用水热合成法制备了SAPO-34粉末,对其进行表征,并深入探讨SAPO-34上二甲醚裂解制烯烃(DTO)反应性能。实验结果表明,二甲醚裂解产物主要为乙烯、丙烯、丁烯,以及少量的甲烷、乙烷、丙烷、丁烷和碳五。随着反应的进行,二甲醚的转化率呈下降趋势,并且随反应温度的上升,催化剂的失活加快。随催化剂的失活,甲烷的生成有一极小值,而乙烯的生成有一极大值。而失活使丙烯、丙烷的选择性下降。相对于丙烯,丙烷下降得更为迅速。丁烯与丁烷表现出与丙烯、丙烷相似的特性。乙烯、丙烯的总选择性最高可达到88%。MTO和DTO反应表现出不同的反应特性。  相似文献   

11.
制取低碳烯烃的催化裂解催化剂及其工业应用   总被引:17,自引:2,他引:15  
催化裂解技术以重油为原料,使用固体酸择形分子筛催化剂,直接生产低碳烯烃,特别是丙烯的新催化转化方法。该方法现已工业化,以大庆减压馏份油掺渣油为原料,在最大量生产丙烯操作条件下,丙烯的收率为22.91%。该文主要介绍CHP-1、CRP-1和CIP-13种催化裂解催化剂的特性、物化性质、原料适应性、催化裂解工艺过程、反应机理及催化裂解催化剂的工业应用情况。  相似文献   

12.
ZRP沸石对FCC汽油催化裂解产丙烯的影响   总被引:3,自引:0,他引:3  
 本文研究了550℃,常压,加有水蒸气条件下,FCC汽油在ZRP沸石上的催化裂解反应,研究了ZRP硅铝比变化和稀土改性ZRP对反应的影响。通过实验结果分析和反应前后反应物与产物分布的计算研究表明,丙烯生产是通过FCC汽油中烯烃进行裂化反应实现的。提高烯烃的选择转化率、促进裂化反应和提高丙烯产品的选择性将有利于丙烯产量的增加。提高ZRP沸石硅铝比能够增加沸石的强酸量,提高烯烃的转化率,提高低碳烯烃的选择性,但丁烯选择性高于丙烯的选择性。稀土改性的ZRP沸石能够增加强酸量,提高烯烃的转化率,提高丙烯的产品选择性。  相似文献   

13.
以异丁烷为原料,在固定床微反实验装置上考察了其在Cr2O3/Al2O3脱氢催化剂和HZSM-5催化剂组成的混合催化剂上脱氢裂解反应的情况。研究发现:两种催化剂在反应器中的分布状态以及Cr2O3/Al2O3催化剂的装填量都会对反应结果产生很大的影响,当两者均匀混合、Cr2O3/Al2O3催化剂的添加量为20%时,裂解反应效果最佳,转化率达到80.99%,三烯总收率为50.26%,其中乙烯、丙烯和丁烯的收率分别为12.42%,24.41%,13.43%;相比于单纯的HZSM-5催化剂,转化率提高了21.22百分点,三烯的选择性提高了2.57百分点。此外,反应过程中采用异丁烷和惰性稀释气(N2)混合进料时,反应效果更佳,而且随稀释比增大,优势更明显。  相似文献   

14.
ABSTRACT

Hierarchical SAPO-34 molecular sieve was synthesized hydrothermally in the presence of different concentrations of n-propylamine (NPA) as the mesoporous generating agent. It has been found that the mesoporous structure and morphology of the hierarchical SAPO-34 was depended to the amount of NPA used. The catalytic activity of the synthesized materials for methanol to propylene conversion were evaluated. A high selectivity for propylene (44.5%) compared to a conventional microporous SAPO-34 (28.7%) was observed with propylene to ethylene (P/E) ratio (3.6) which was attributed to the less total acidic sites measured by NH3-TPD and the optimal combination of mesoporous and microporous reaction paths. The synthesized hierarchical SAPO-34 catalysts were characterized by XRD, FE-SEM, BET, NH3-TPD and TGA techniques.  相似文献   

15.
采用(NH4)3PO4溶液浸渍改性HZSM-5分子筛,制备了P/HZSM-5催化剂,并使用微型固定床反应器考察其对乙醇催化脱水制备低碳烯烃的催化性能。结果显示,适当量的P改性得到的P/HZSM-5催化剂能显著提高丙烯和丁烯的选择性,抑制低碳烷烃C1~C4生成。在此基础上考察了反应温度、空速、反应时间对催化剂性能的影响。当催化剂P质量分数为3.0%,反应温度450℃,空速为3.16h-1时,反应得到的丙烯选择性高达30%。并使用TG-DTG热重分析手段对使用过的P/HZSM-5催化剂进行积炭失活表征与分析。  相似文献   

16.
新型丙烯醛和丙烯酸催化剂单管工艺试验研究   总被引:1,自引:0,他引:1  
在模拟工业生产装置上,研究了新型丙烯(C3^=)氧化制丙烯醛(ACR)、ACR氧化制丙烯酸(AA)催化剂的性能,确定了催化剂的操作条件,并在此条件下进行了催化剂稳定性考察。结果表明:C3^=氧化制ACR在空速800-1000h^-1,盐浴温度310℃,C3^=、空气、水的体积比为10:73:17时,C3^=转化率高于98%,ACR收率高于81%,ACR+AA总收率高于92%,COx收率低于4%;ACR氧化制AA在空速为1420h^-1,盐浴温度为258℃时,ACR转化率高于98%,COx收率低于3%。催化剂运行1000h后的性能良好。  相似文献   

17.
在固定床微反装置上对4种不同结构的分子筛HZSM-5,HIM-5,HEU-1,HAl-ITQ-13的石脑油催化裂解(NCC)反应性能进行对比评价。采用XRD、SEM、N2吸附-脱附及Py-IR等方法表征各分子筛的孔道结构和酸性质。结果表明:与HZSM-5相比,石脑油在HIM-5,HEU-1,HAl-ITQ-13作用下催化裂解反应的转化率均有所提高;孔径较小、酸量较低的HAl-ITQ-13和HEU-1具有较高的催化活性,其作用下的低碳烯烃(乙烯+丙烯+丁烯)收率分别比HZSM-5提高13.3百分点和8.6百分点;而在HIM-5作用下的低碳烯烃收率则比HZSM-5降低3.5百分点。同时,考察了NCC反应条件下丙烯的反应性能,发现丙烯在NCC反应条件下具有非常高的反应活性,可通过催化反应转化为乙烯、丙烷、丁烯等产物。抑制氢转移反应有利于提高低碳烯烃的收率,开发NCC新型催化材料时,应综合考虑分子筛的酸性质和孔道结构对低碳烯烃二次反应的抑制作用。  相似文献   

18.
新一代功能性聚丙烯催化剂的研发进展   总被引:1,自引:1,他引:0  
为适应聚丙烯树脂高性能化和功能化的发展需求,提出了基于MgCl2负载的高效Ziegler-Natta催化剂,借助于茂金属及非茂金属单中心催化剂丰富多样且明确可控的烯烃聚合催化能力,通过多重载体化制备了Ziegler-Natta/(非)茂金属复合型催化剂,从而获得兼具高活性、高立体定向性和可调、可控的共聚性能的新一代功能性聚丙烯催化剂,用于以聚丙烯/乙丙多相共聚物、高熔体强度聚丙烯和极性改性的功能化聚丙烯等为代表的高性能聚丙烯树脂的制备。通过对聚丙烯催化剂与聚合物结构性能之间对应关系的分析,及Ziegler-Natta/(非)茂金属复合型催化剂在制备多相共聚聚丙烯和高熔体强度聚丙烯等树脂中的实践,指出了以获得催化功能性为目标的Ziegler-Natta/(非)茂金属复合型催化剂是今后聚丙烯催化剂的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号