首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai SS  Syage JA 《Analytical chemistry》2006,78(4):1191-1199
In this work, we compare the quantitative accuracy and sensitivity of analyzing lipids by atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI) LC/MS. The target analytes include free fatty acids and their esters, monoglyceride, diglyceride, and triglyceride. The results demonstrate the benefits of using LC/APPI-MS for lipid analysis. Analyses were performed on a Waters ZQ LC/MS. Normal-phase solvent systems were used due to low solubility of these compounds in aqueous reversed-phase solvent systems. By comparison, APPI offers lower detection limits, generally highest signal intensities, and the highest S/N ratio. APPI is 2-4 times more sensitive than APCI and much more sensitive than ESI without mobile-phase modifiers. APPI and APCI offer comparable linear range (i.e., 4-5 decades). ESI sensitivity is dramatically enhanced by use of mobile phase modifiers (i.e., ammonium formate or sodium acetate); however, these ESI adduct signals are less stable and either are nonlinear or have dramatically reduced linear ranges. Analysis of fish oils by APPI shows significantly enhanced target analyte intensities in comparison with APCI and ESI.  相似文献   

2.
In this work, we describe the performance of an atmospheric pressure photoionization (APPI) source for sampling liquid flows. The results presented here primarily focus on the mechanism of direct photoionization (PI), as compared to the dopant mechanism of PI. Measured detection limits for direct APPI were comparable to atmospheric pressure chemical ionization (APCI; e.g., 1 pg for reserpine). The ion signal is linear up to 10 ng injected quantity, with a useful dynamic range exceeding 100 ng. Evidence is presented indicating that APPI achieves significantly better sensitivity than APCI at flow rates below 200 microL/min, making it a useful source for capillary liquid chromatography and capillary electrophoresis. Results are presented indicating that APPI is less susceptible to ion suppression and salt buffer effects than APCI and electrospray ionization (ESI). The principal benefit of APPI, as compared to other ionization sources, is in efficiently ionizing broad classes of nonpolar compounds. Thus, APPI is an important complement to ESI and APCI by expanding the range and classes of compounds that can be analyzed. In this paper, we also discuss the role of direct APPI vs PI-induced APCI using dopants.  相似文献   

3.
In this work, we compared APPI and APCI for normal-phase LC/MS chiral analysis of five pharmaceuticals. Performance was compared both by FIA and by on-column analysis using a ChiralPak AD-H column under optimized conditions. By comparison, APPI generated more reproducible signals and was less susceptible to ion suppression than APCI. APPI generated higher peak area and lower baseline noise, and therefore much higher S/N ratios. APPI sensitivity (i.e., S/N ratio) was approximately 2-130 times higher than APCI by FIA and was approximately 2.6-530 times higher than APCI by on-column analysis depending on specific compounds. The better APPI sensitivity as compared to APCI was more dramatic by on-column analysis than by FIA. APCI sensitivity was degraded by ion suppression caused by LC column bleeding components and by elevated APCI baseline noise relative to APPI. On-column APPI LODs (at S/N = 3) were 83, 16, 17, 95, and 7 pg for enantiomer #1, and 104, 23, 19, 122, and 17 pg for enantiomer #2 for benzoin, naringenin, mianserin, mephenesin, and diperodon, respectively, on a Waters ZQ. APPI offers no concern of explosion hazard relative to APCI corona needle discharge or ESI high voltage discharge when flammable solvents (e.g., hexane) are used as mobile phases. Whether APPI dopants are required depends on the IP(s) of mobile-phase solvent(s) and solvent complexes, and photon energies of VUV lamps. Dopant was not necessary for hexane-based mobile phases due to their self-doping effects. Dopants did enhance Kr lamp APPI sensitivity when MeOH was used as the mobile phase. However, dopants became unnecessary for the MeOH mobile phase when the Ar lamp was used.  相似文献   

4.
Atmospheric pressure chemical ionization was compared with electrospray ionization and atmospheric pressure photoionization (APPI) as an interface of high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) for the determination of cyclosporin A (CsA) in biological fluids in support of in vivo pharmacodynamic studies. These ion sources were investigated in terms of their suitability and sensitivity for the detection of CsA. The effects of the eluent flow rate and composition as well as the nebulizer temperatures on the photoionization efficiency of CsA in the positive ion mode under normal-phase HPLC conditions were explored. The ionization mechanism in the APPI environment with and without the use of the dopant was studied using two test compounds and a few solvent systems employed for normal-phase chromatography. The test compounds were observed to be ionized mainly by proton transfer with the self-protonated solvent molecules produced through photon irradiation. Furthermore, ion suppression due to sample matrix interference in the normal-phase HPLC-APPI-MS/MS system was monitored by the postcolumn infusion technique. The applicability of these proposed HPLC-API-MS/MS approaches for the determination of CsA at low nanogram per milliliter levels in rat plasma was examined. These proposed methods were then compared with respect to specificity, linearity, detection limit, and accuracy.  相似文献   

5.
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple PKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.  相似文献   

6.
Good reliability of Caco-2 permeability studies requires competent sampling and analytical methods to ensure the comparability of day-to-day experiments. In this work, two n-in-one LC/MS/MS methods based on two different ionization techniques were developed and validated for a group of reference compounds; eight of them are recommended by the Food and Drug Administration (FDA) for the evaluation of oral drug permeability. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), as an interface for quantitative LC/MS analysis was evaluated in comparison to the electrospray ionization (ESI). Generally, the validation parameters, including sensitivity, accuracy, and repeatability, were comparable for the APPI and ESI methods. The main difference was that the linear quantitative range of APPI was 3-4 orders of magnitude (r(2) >/= 0.998) whereas in ESI it was typically 2-3 orders of magnitude (r(2) >/= 0.990). By the APPI and ESI methods, the simultaneous analysis of nine highly heterogeneous compounds was achieved within 5.5-7 min, which leads to significant savings in time and cost of the analyses. The successful validation data indicate the usefulness of both the methods for the rapid and sensitive (LOD values typically 相似文献   

7.
Direct analysis of samples using atmospheric pressure ionization (API) provides a more rapid method for analysis of volatile and semivolatile compounds than vacuum solids probe methods and can be accomplished on commercial API mass spectrometers. With only a simple modification to either an electrospray (ESI) or atmospheric pressure chemical ionization (APCI) source, solid as well as liquid samples can be analyzed in seconds. The method acts as a fast solids/liquid probe introduction as well as an alternative to the new direct analysis in real time (DART) and desorption electrospray ionization (DESI) methods for many compound types. Vaporization of materials occurs in the hot nitrogen gas stream flowing from an ESI or APCI probe. Ionization of the thermally induced vapors occurs by corona discharge under standard APCI conditions. Accurate mass and mass-selected fragmentation are demonstrated as is the ability to obtain ions from biological tissue, currency, and other objects placed in the path of the hot nitrogen stream.  相似文献   

8.
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.  相似文献   

9.
An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring.  相似文献   

10.
A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production.  相似文献   

11.
Gao L  Cooks RG  Ouyang Z 《Analytical chemistry》2008,80(11):4026-4032
The performance of mass spectrometers with limited pumping capacity is shown to be improved through use of a discontinuous atmospheric pressure interface (DAPI). A proof-of-concept DAPI interface was designed and characterized using a miniature rectilinear ion trap mass spectrometer. The interface consists of a simple capillary directly connecting the atmospheric pressure ion source to the vacuum mass analyzer region; it has no ion optical elements and no differential pumping stages. Gases carrying ionized analytes were pulsed into the mass analyzer for short periods at high flow rates rather than being continuously introduced at lower flow rates; this procedure maximized ion transfer. The use of DAPI provides a simple solution to the problem of coupling an atmospheric pressure ionization source to a miniature instrument with limited pumping capacity. Data were recorded using various atmospheric pressure ionization sources, including electrospray ionization (ESI), nano-ESI, atmospheric pressure chemical ionization (APCI), and desorption electrospray ionization (DESI) sources. The interface was opened briefly for ion introduction during each scan. With the use of the 18 W pumping system of the Mini 10, limits of detection in the low part-per-billion levels were achieved and unit resolution mass spectra were recorded.  相似文献   

12.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

13.
Fast and accurate analytical methods are essential to keep pace with sample libraries produced from combinational chemistry and high-throughput biological screening. Many laboratories now use a combination of ionization techniques for the characterization of these samples, including atmospheric pressure chemical ionization (APCI), electrospray ionization (ESI), and photoionization (PI). Data are shown here from the analysis of a compound collection plate containing a variety of sample structures. ESI will normally analyze around 80% of these samples, necessitating a source change to analyze a further 10%. In this work, we have developed a new combined ESI-APCI source (ESCi) for use in on-line HPLC applications. The combined source allows alternate on-line ESI and APCI scans with polarity switching within a single analysis. The ESCi source has been designed to be a simple replacement for the existing mass spectrometer interfaces. Each ionization method is optimized independently using separate tuning parameters. Instrument electronics can readily switch between the two ionization methods and polarities within normal interscan time periods. The new source has reduced the analysis time of sample plates by eliminating the need for a source hardware change, source optimization, and repeat analyses.  相似文献   

14.
Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), together with tandem mass spectrometry (MSn), are used to study the mechanism of chlorination of amines and to develop a method for qualitative and quantitative determination of organic chloramines. Cyclohexylamine and 1,4-butanediamine (putrescine) are used as model compounds to investigate the mechanisms of the reactions between primary aliphatic amines and hypochlorous acid (aqueous Cl2). The chlorination products are identified and characterized by collision-induced dissociation (CID) and H/D exchange. Chlorination occurs by electrophilic addition of Cl+ and may be followed by HCl elimination, hydrolysis, or, in the case of diamines, amine elimination by intramolecular nucleophilic substitution. The relative rates of chlorination at amine and chloramine nitrogens are a function of pH and depend on the basicity of the amine. A novel method for active chlorine quantification using ESI or APCI mass spectrometry is suggested on the basis of the extent of chlorination of a sacrifical amine standard. This measurement has a limit of detection for N-chlorocyclohexylamine in the range of 0.1-10 microM, a linear dynamic range of 10(2)-10(3), and an accuracy of +/-10%, as determined for wastewater samples.  相似文献   

15.
A quantitative solid-phase extraction-liquid chromatography/mass spectrometry (SPE-LC/MS) method is described for the simultaneous analysis of halogenated byproducts of alkylphenolic compounds and their degradation products formed during chlorine disinfection in the presence of bromide ions. Compounds analyzed include brominated and chlorinated nonylphenol ethoxylates (XN-PEOs); octylphenol ethoxylates (XOPEOs); nonylphenols (XNP); nonylphenoxycarboxylates (XNPECs) and their precursors nonionic surfactants, alkylphenol ethoxylates (APEOs); and their metabolites formed during sewage treatment, alkylphenoxycarboxylates (APECs) and alkylphenols (APs). Target compounds were concentrated from water samples using a C18 SPE procedure. Extracts were analyzed using reversed phase LC/MS. The performances of both atmospheric pressure chemical ionization (APCI) and electrospray (ESI) interfaces were compared. ESI offered better sensitivity and specificity for a higher range of oligomers. Detection limits (LODs) for water samples were from 20 to 100 ng/L; and for sediment samples, from 2 to 10 microg/kg. Slightly higher LODs were obtained for sludge samples (5-25 microg/kg). Halogenated byproducts were found in sludge from Barcelona drinking water treatment plant in concentrations of 220 microg/kg for BrNP, 430 microg/kg for BrNPEOs (nEO = 1 - 2), and 1600 microg/kg for BrNPEOs (nEO = 3 - 15). The concentration of ClNPEOs was estimated to be in the order of 660 microg/kg (assuming the same response as BrNPEOs). Halogenated OPEOs were also identified, and their concentration was approximately 50 times lower than the concentration of NPEOs analogues. To our knowledge, this is the first method described that allows simultaneous determination of alkyphenol ethoxylates and halogenated derivatives, including degradation products.  相似文献   

16.
The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.  相似文献   

17.
A new sample ionization technique, atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI), was coupled with a commercial ion trap mass spectrometer. This configuration enables the application-specific selection of external atmospheric ionization sources: the electrospray/APCI (commercially available) and AP MALDI (built in-house), which can be readily interchanged within minutes. The detection limit of the novel AP MALDI/ion trap is 10-50 fmol of analyte deposited on the target surface for a four-component mixture of peptides with 800-1700 molecular weight. The possibility of peptide structural analysis by MS/MS and MS3 experiments for AP MALDI-generated ions was demonstrated for the first time.  相似文献   

18.
In a previous study on capillary electrophoresis-atmospheric pressure photoionization mass spectrometry (CE-APPI-MS), it was observed that the formation of gas-phase ions does not always proceed through photon-induced mechanisms (Hommerson, P.; Khan, A. M.; De Jong, G. J.; Somsen, G. W. Electrophoresis 2007, 28, 1444-1453). That is, analyte signals were observed when the VUV excitation source was switched off. The aim of the present study was to further explore this photon-independent ionization (PII) process. Parameters such as MS capillary voltage, compound nature, background electrolyte (BGE) composition, and presence of dopants were studied using a CE-APPI-MS setup. Infusion experiments showed a relatively low MS capillary voltage of approximately 600 V to be the main prerequisite for PII. Quaternary ammonium compounds showed strong responses in PII-MS but could not be observed in dopant-assisted APPI. Basic amines could be ionized by both photoionization (PI) and PII, whereas neutral compounds (steroids) could only be observed using PI. Nonvolatile BGEs appeared to cause substantial ionization suppression in PII, while PI signals remained largely unaffected. Selection of the proper interface and MS settings allowed PI and PII to proceed simultaneously, which broadened the range of compounds that could be analyzed in a single CE-APPI-MS run. Based on the observed characteristics, it is concluded that PII most probably occurs by a liquid-phase ionization mechanism, which appears to arise in the APPI source when specific conditions are selected.  相似文献   

19.
For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated.  相似文献   

20.
A method to investigate the chemical composition of organic aerosols formed from biogenic hydrocarbon oxidation using atmospheric pressure chemical ionization mass spectrometry (APCI/MS) is described. The method involves the direct introduction of aerosol particles into the ion source of the mass spectrometer. Using this technique, reaction monitoring experiments of alpha-pinene ozonolysis show the formation of hetero- and homomolecular cluster anions (dimers) of the primary oxidation products (multifunctional carboxylic acids). Since the formation of dimers plays a profound role in new particle formation processes by homogeneous nucleation in the atmosphere and, at the same time, is an intrinsic feature of APCI, it is essential to differentiate between both processes when on-line APCI/MS is applied. In this paper, we compare the results from the investigations of organic aerosols and artificially generated dimer cluster ions of the same compounds using identical ionization conditions. The clusters and their formation processes are characterized by varying the analyte concentration, investigating the thermal stability of dimers, and studying collisional activation properties of both ion species. The investigations show a significant difference in ion stability: dimer anions measured on-line have an estimated stability that is 20 kJ mol(-1) higher than that of the corresponding artificially generated cluster ions. Hence, the technique provides the possibility to accurately characterize dimers as ionized reaction products from biogenic hydrocarbon oxidation and allows an insight into the process of new-particle formation by homogeneous nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号