首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless Ad Hoc Multicast Routing with Mobility Prediction   总被引:1,自引:1,他引:0  
An ad hoc wireless network is an infrastructureless network composed of mobile hosts. The primary concerns in ad hoc networks are bandwidth limitations and unpredictable topology changes. Thus, efficient utilization of routing packets and immediate recovery of route breaks are critical in routing and multicasting protocols. A multicast scheme, On-Demand Multicast Routing Protocol (ODMRP), has been recently proposed for mobile ad hoc networks. ODMRP is a reactive (on-demand) protocol that delivers packets to destination(s) on a mesh topology using scoped flooding of data. We can apply a number of enhancements to improve the performance of ODMRP. In this paper, we propose a mobility prediction scheme to help select stable routes and to perform rerouting in anticipation of topology changes. We also introduce techniques to improve transmission reliability and eliminate route acquisition latency. The impact of our improvements is evaluated via simulation.  相似文献   

2.
Group communication services typically generate large multicast data streams. Delivering such massive data streams to the end system nodes at the edge of the Internet has been a challenging problem in terms of high stress on the network links and high demand on network resources and routing node capacities. Most of existing research has been dedicated on geo-distance based routing with various optimizations to alleviate the performance impact on geo-distance based routing due to unpredictable network dynamics. Most representative techniques are targeted at reducing the delivery path length or optimizing routing path by utilizing network locality. In this paper, we identify the inefficiency of geo-distance based routing protocols in many existing multicast overlay networks in terms of both resource utilization and group communication efficiency. To address this issue, we develop a utility-based routing scheme (UDR) that can provide efficient group communication services in a decentralized geographical overlay network. Our approach makes three unique contributions. First, we introduce a utility function to refine the geo-distance based routing in such a way that the routing path selection can carefully incorporate both geo-distance based metric and the network latency. Second, we enhance our utility driven routing scheme with self-adaptive capability by considering the nodes?? state and network density. Thus, nodes in the multicast network can dynamically accommodate the changes of network conditions based solely on their local knowledge about the network. Third, we devise a suite of optimization techniques to minimize the maintenance cost and computational complexity of our self-adaptive and utility-drive routing scheme. We evaluate our approach through extensive experiments based on a realistic network topology model and show that the UDR method is highly scalable and it effectively enhances the multicast delivery efficiency for large scale group communication services compared to existing geo-distance based routing protocols.  相似文献   

3.
A survey of routing techniques for mobile communications networks   总被引:6,自引:0,他引:6  
Mobile wireless networks pose interesting challenges for routing system design. To produce feasible routes in a mobile wireless network, a routing system must be able to accommodate roving users, changing network topology, and fluctuating link quality. We discuss the impact of node mobility and wireless communication on routing system design, and we survey the set of techniques employed in or proposed for routing in mobile wireless networks.  相似文献   

4.
In recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.   相似文献   

5.
An important problem in WDM network design is to construct a logical topology and determine an optimal routing over that topology. Mixed Integer Linear Program (MILP) formulations to generate optimal solutions for this problem have been presented. Such formulations are computationally intractable, even for moderate sized networks. A standard approach is to decouple the problem of logical topology design and the problem of routing the traffic on this logical topology. Heuristics for finding the logical topology exist and a straight-forward linear program (LP), based on the node-arc formulation can be used to solve the routing problem over a given logical topology. We have found that such LP formulations become computationally infeasible for large networks. In this paper, we present a new formulation, based on the arc-chain representation, for optimally routing the specified traffic over a given logical topology to minimize the congestion of the network. We have used the revised simplex method incorporating an implicit column generation technique, and exploited the special Generalized Upper Bounding structure as well as the possibility of eta-factorization for efficiently updating the dual variables and finding the solution. Experimental results on a number of networks demonstrate the suitability of this approach.  相似文献   

6.
With the widespread deployment of cloud services, data center networks are developing toward large‐scale, multi‐path networks. Conventional switching‐oriented data center network meets difficulties in terms of scalability and flexibility to support increasing bandwidth requirements for cloud services. To solve this problem, a simple and scalable architecture, MatrixDCN, is proposed in this paper. MatrixDCN is an approximate non‐blocking network, in which switches and servers are arranged in rows and columns that compose a matrix structure. A MatrixDCN network can accommodate up to hundreds of thousands of servers without bandwidth bottlenecks. Furthermore, the physical topology of a MatrixDCN network can be designed consistently with its logic topology, which helps to reduce the complexity of the management and maintenance of a data center. An efficient routing algorithm, named fault‐avoidance routing (FAR), is well designed for MatrixDCN to fully leverage the regularity in the topology. FAR builds two routing tables for a router. A BRT is built based on local topology, and a novel negative routing table (NRT) is increasingly built based on learned partial network failures, which really avoids the problem of network convergence and further shortens the calculating time of routing tables. FAR also greatly reduces the size of routing tables by introducing NRTs at routers. Theoretical analysis and simulations show that MatrixDCN has advantages on the scalability of topology, network throughput, and the performance of FAR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
An architecture adaptabie to dynamic topology changes in multi-hop mobile radio networks is described. The architecture partitions a mobile network into logically independent subnetworks. Network nodes are members of physical and virtual subnets and may change their affiliation with these subnets due to their mobility. Each node is allocated an address based on its current subnet affiliation. We observe-especially in large networks with random topology-that partitioning of the network may result in significantly more balanced load than in one large multi-hop network, an attribute that can significantly improve the network's performance. The architecture is highly fault-tolerant, has a relatively simple location updating and tracking scheme, and by virtue of its load balancing feature, typically achieves a network with relatively high throughput and low delay. The addressing method, logical topology, mobility management and routing procedure are described, and network performance is evaluated.  相似文献   

8.
In this paper, an architecture for code-empowered optical CDMA (OCDMA) lightwave networks is presented. The architecture is based on reconfigurable optically transparent paths among users of the network to provide high-bandwidth optical connections on demand over small areas such as local area networks or access networks. The network operates on the transmission of incoherent OCDMA codes, each network station being equipped with an OCDMA encoder and decoder. The routing at a network node is based on the OCDMA code itself. The destination address, as well as the next node on the path, is given by the code as in a code-empowered network. A node consists of an OCDMA router built from parallel code converter routers that perform switching, routing, and code conversion. The latter enables a virtual code path for increased scalability. Commonly available delay lines enable the tunability of the encoder, decoder, and router for a reconfigurable and flexible network. Flexibility and granularity are also accentuated by OCDMA encoding. An OCDMA lightwave network can therefore respond to changes in traffic load, traffic conditions, failure, and other network impairments. We describe the possible architectures and the routing constraints of such OCDMA lightwave networks. We present a power analysis and focus on the performance issues of dynamic routing. The effect of coding, topology, load condition, and traffic demand is analyzed using simulations. The obtained results show that the flexibility of OCDMA and the large offered cardinality can be a solution to the needs of local area and access networks.  相似文献   

9.
Routing is considered to be one the most challenging problems in mobile ad hoc networks. It has been shown that the use of virtual coordinates or identifiers for efficient routing and data management has several advantages compared to classical topology control techniques based on pre-defined addresses or geographical coordinates. However, these advantages only hold for single domain networks with limited mobility. In a previous paper, we discussed the challenges arising from using virtual coordinates for routing (to a particular destination ID or to indexed data or resources) in mobile networks in multi-domain network scenarios. We developed a solution by managing data with a distributed hash table scheme. Based on our virtual cord protocol, we then implemented inter-domain routing using appropriate indirections. That approach, however, was still limited in finding efficient routes over multiple transit networks. In this paper, we extend that work by defining a framework for optimized inter-domain routing. In particular, we investigate the use of ant colony optimization for optimizing routes between multiple network domains. We show how distributed routing tables can be created and maintained and we outline a heuristic for finding candidate routes. Simulation experiments confirm the efficiency of the selected routes both on a intra and on a inter-domain level.  相似文献   

10.
Precomputation-based methods have recently been proposed as an instrument to facilitate scalability, improve response time, and reduce computation load on network elements. The key idea is, in effect, to reduce the time needed to handle an event by performing some computation in advance, i.e., prior to the event's arrival. Such computations are performed as background processes, enabling a solution to be provided promptly upon a request, through a simple, fast procedure. We investigate precomputation methods in the context of quality-of-service (QoS) routing. Precomputation is highly desirable for QoS routing schemes due to the high computational complexity of selecting QoS paths, and the need to provide a satisfactory path promptly upon a request. We consider two major settings of QoS routing. The first case is where the QoS constraint is of the "bottleneck" type, e.g., a bandwidth requirement, and network optimization is sought through hop minimization. The second is the more general setting of "additive" QoS constraints (e.g., delay) and general link costs. The paper mainly focuses on the first setting. We show that, by exploiting the typical hierarchical structure of large-scale networks, a substantial improvement can be achieved in terms of computational complexity. We consider networks with topology aggregation. We show that precomputation is a necessary element for any QoS routing scheme and establish a precomputation scheme appropriate for such settings. We consider the case of additive QoS constraints (e.g., delay) and general link costs. As the routing problem becomes NP-hard, we focus on /spl epsiv/-optimal approximations and derive a precomputation scheme that offers a major improvement over the standard approach.  相似文献   

11.
A distributed routing algorithm for mobile wireless networks   总被引:6,自引:0,他引:6  
We present a loop-free, distributed routing protocol for mobile packet radio networks. The protocol is intended for use in networks where the rate of topological change is not so fast as to make flooding the only possible routing method, but not so slow as to make one of the existing protocols for a nearly-static topology applicable. The routing algorithm adapts asynchronously in a distributed fashion to arbitrary changes in topology in the absence of global topological knowledge. The protocol's uniqueness stems from its ability to maintain source-initiated, loop-free multipath routing only to desired destinations with minimal overhead in a randomly varying topology. The protocol's performance, measured in terms of end-to-end packet delay and throughput, is compared with that of pure flooding and an alternative algorithm which is well-suited to the high-rate topological change environment envisioned here. For each protocol, emphasis is placed on examining how these performance measures vary as a function of the rate of topological changes, network topology, and message traffic level. The results indicate the new protocol generally outperforms the alternative protocol at all rates of change for heavy traffic conditions, whereas the opposite is true for light traffic. Both protocols significantly outperform flooding for all rates of change except at ultra-high rates where all algorithms collapse. The network topology, whether dense or sparsely connected, is not seen to be a major factor in the relative performance of the algorithms.The work of A. Ephremides was supported in part by the National Science Foundation under grants D-CDR-8803012 and EEC94-02384.  相似文献   

12.
Quality-of-service (QoS) routing satisfies application performance requirements and optimizes network resource usage by selecting paths based on connection traffic parameters and link load information. However, distributing link state imposes significant bandwidth and processing overhead on the network. This paper investigates the performance tradeoff between protocol overhead and the quality of the routing decisions in the context of the source-directed link state routing protocols proposed for IP and ATM networks. We construct a detailed model of QoS routing that parameterizes the path-selection algorithm, link-cost function, and link state update policy. Through extensive simulation experiments with several network topologies and traffic patterns, we uncover the effects of stale link state information and random fluctuations in traffic load on the routing and setup overheads. We then investigate how inaccuracy of link state information interacts with the size and connectivity of the underlying topology. Finally, we show that tuning the coarseness of the link-cost metric to the inaccuracy of underlying link state information reduces the computational complexity of the path-selection algorithm without significantly degrading performance. This work confirms and extends earlier studies, and offers new insights for designing efficient quality-of-service routing policies in large networks  相似文献   

13.
The routing protocol for Wireless Sensor Networks (WSNs) is defined as the manner of data dissemination from the network field (source) to the base station (destination). Based on the network topology, there are two types of routing protocols in WSNs, they are namely flat routing protocols and hierarchical routing protocols. Hierarchical routing protocols (HRPs) are more energy efficient and scalable compared to flat routing protocols. This paper discusses how topology management and network application influence the performance of cluster-based and chain-based hierarchical networks. It reviews the basic features of sensor connectivity issues such as power control in topology set-up, sleep/idle pairing and data transmission control that are used in five common HRPs, and it also examines their impact on the protocol performance. A good picture of their respective performances give an indication how network applications, i.e whether reactive or proactive, and topology management i.e. whether centralized or distributed would determine the network performance. Finally, from the ensuring discussion, it is shown that the chain-based HRPs guarantee a longer network lifetime compared to cluster-based HRPs by three to five times.  相似文献   

14.
With the widespread deployment of Internet protocol/wavelength division multiplexing (IP/WDM) networks, it becomes necessary to develop traffic engineering (TE) solutions that can effectively exploit WDM reconfigurability. More importantly, experimental work on reconfiguring lightpath topology over testbed IP/WDM networks is needed urgently to push the technology forward to operational networks. This paper presents a performance and testbed study of topology reconfiguration for IP/WDM networks. IP/WDM TE can be fulfilled in two fashions, overlay vs. integrated, which drives the network control software, e.g., routing and signaling protocols, and selects the corresponding network architecture model, e.g., overlay or peer-to-peer. We present a traffic management framework for IP over reconfigurable WDM networks. Three "one-hop traffic maximization"-oriented heuristic algorithms for lightpath topology design are introduced. A reconfiguration migration algorithm to minimize network impact is presented. To verify the performance of the topology design algorithms, we have conducted extensive simulation study. The simulation results show that the topologies designed by the reconfiguration algorithms outperform the fixed topology with throughput gain as well as average hop-distance reduction. We describe the testbed network and software architecture developed in the Defense Advanced Research Projects Agency (DARPA) Next Generation Internet (NGI) SuperNet Network Control and Management project and report the TE experiments conducted over the testbed.  相似文献   

15.
QoS issues in ad hoc wireless networks   总被引:25,自引:0,他引:25  
Ad hoc wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. The topology of the network changes dynamically as mobile nodes join or depart the network or radio links between nodes become unusable. This article addresses some of the quality of service issues for ad hoc networks which have started to receive increasing attention in the literature. The focus is on QoS routing. This is a complex and difficult issue because of the dynamic nature of the network topology and generally imprecise network state information. We present the basic concepts and discuss some of the results. The article concludes with some observations on the open areas for further investigation  相似文献   

16.
A cluster management scheme for dynamic networks, the purpose of which is to maintain the cluster structure of the hierarchical network as a balanced-tree topology is presented. The theoretical time complexity bounds of the cluster management scheme for node birth and death are derived. The effects of the cluster management on gate-connected fixed-node networks under heavy intercluster traffic situations are discussed. In order to show that the scheme can handle realistic communication networks, routing tables and OD pair shortest path routing are used. The settle-down time, throughput, and end-to-end link delays of a network that uses cluster management and a network of the same topology that only uses flooding are compared  相似文献   

17.
An OSPF topology server: design and evaluation   总被引:10,自引:0,他引:10  
In large scale, operational Internet protocol networks, creating timely, accurate and network-wide views of the intradomain topology is a fundamental problem. Topical network backbones consist of hundreds of routers, which establish routing adjacencies with one another through static configuration and dynamic routing protocols, such as open shortest path first (OSPF). We describe the design of an OSPF topology server which tracks intradomain topology, by passively and safely listening into OSPFs reliable flooding mechanism, or by pushing and pulling information from the routers via the simple network management protocol. We provide a detailed evaluation and comparison of the two approaches in terms of operational issues, reliability and timeliness of information  相似文献   

18.
The integration of different kinds of wireless mobile networks, or heterogeneous wireless networks (HWNs), is emerging. However, a systematic discussion with regard to the special requirements and the complexity of QoS-aware routing in such networks and how QoS is blended with routing is still largely missing. This article aims to cast some light on these aspects. Based on an analysis of the basic architecture of an emerging heterogeneous wireless network and its new requirements on QoS-aware routing, a policy-based QoS supporting system infrastructure and a QoS-aware routing algorithm called QRA are presented in this article. The presentation is specifically given to these issues and components that are unique to HWNs and its QoS routing. The evaluation results show the impact of different network parameters on the performance of QoS-aware routing in HWNs  相似文献   

19.
Practical Routing in Delay-Tolerant Networks   总被引:6,自引:0,他引:6  
Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.  相似文献   

20.
ABRP: Anchor-based Routing Protocol for Mobile Ad Hoc Networks   总被引:2,自引:0,他引:2  
Ad hoc networks, which do not rely on any infrastructure such as access points or base stations, can be deployed rapidly and inexpensively even in situations with geographical or time constraints. Ad hoc networks are attractive in both military and disaster situations and also in commercial uses like sensor networks or conferencing. In ad hoc networks, each node acts both as a router and as a host. The topology of an ad hoc network may change dynamically, which makes it difficult to design an efficient routing protocol. As more and more wireless devices connect to the network, it is important to design a scalable routing protocol for ad hoc networks. In this paper, we present Anchor-based Routing Protocol (ABRP), a scalable routing protocol for ad hoc networks. It is a hybrid routing protocol, which combines the table-based routing strategy with the geographic routing strategy. However, GPS (Global Positioning System) (Kaplan, Understanding GPS principles and Applications, Boston: Artech House publishers, 1996) support is not needed. ABRP consists of a location-based clustering protocol, an intra-cell routing protocol and an inter-cell routing protocol. The location-based clustering protocol divides the network region into different cells. The intra-cell routing protocol routes packets within one cell. The inter-cell routing protocol is used to route packets between nodes in different cells. The combination of intra-cell and inter-cell routing protocol makes ABRP highly scalable, since each node needs to only maintain routes within a cell. The inter-cell routing protocol establishes multiple routes between different cells, which makes ABRP reliable and efficient. We evaluate the performance of ABRP using ns2 simulator. We simulated different size of networks from 200 nodes to 1600 nodes. Simulation results show that ABRP is efficient and scales well to large networks. ABRP combines the advantages of multi-path routing strategy and geographic routing strategy—efficiency and scalability, and avoids the burden—GPS support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号