首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a move to extend the storage capabilities of magnetic storage systems beyond 1 Tb/in/sup 2/, the use of patterned media has often been cited. Here, recorded domains are constrained by the geometry of the magnetic island and not the geometry of the recording head. Conventional two-dimensional readout modeling techniques, using the reciprocity integral, rely on the assumption that the across-track medium magnetization is uniform under the giant magnetoresistive replay head. However, in the case of a geometrically constrained medium this is not the case. This work investigates the effect that the island geometry has on the characteristics of the replay signal in perpendicular patterned magnetic media storage through the extension of the reciprocity integral to three dimensions. The paper describes replay pulses that offer different characteristics from those obtained by conventional two-dimensional techniques. The origins of these differences are explained by the variation in medium magnetization across the track.  相似文献   

2.
Patterned magnetic media promises areal densities in excess of 1 Tbit/in2 for data storage. However, current imperfect patterning techniques result in a variation in the dimensions and distribution of the fabricated islands. As a result, this variation introduces jitter in the replay waveform that makes data recovery difficult. In this paper, we investigate the use of low-density parity-check (LDPC) codes and iterative decoding for mitigating the effects of lithography jitter and improving the read channel performance in patterned media storage systems. In addition, we show that the adoption of LDPC coding techniques permits an increase in the data storage capability of the medium to approximately 1.6 Tbit/in2 with acceptable bit-error-rate performance.  相似文献   

3.
The possibility of 300-500 Gbit/in/sup 2/ perpendicular recording using granular recording media has been investigated through micromagnetic simulation based on the Langevin equation. Writability and thermal stability in 10 years were obtained changing media parameters such as the grain size D, the grain separation d, and the thickness of the recording layer t/sub mag/ for proper combination of the grain saturation magnetization M/sub s-grain/ and the grain perpendicular anisotropy energy K/sub u-grain/. It was found that high-density recording is realized under the large grain separation, the large grain saturation magnetization, and the large grain anisotropy energy. The read/write calculation using ordered medium with D of 4.2 nm, d of 2.3 nm, t/sub mag/ of 12.0 nm, M/sub s-grain/ of 1313 emu/cm/sup 3/, and K/sub u-grain/ of 7.0 Merg/cm/sup 3/ confirmed the possibility of 1303 kFCI and 1954 kFCI perpendicular recording, leading to 325 and 488 Gbit/in/sup 2/ with 250 kTPI (track pitch of 102 nm).  相似文献   

4.
We report on the recording performance of discrete track patterned media fabricated by focused ion beam (FIB). We investigated performance over a small area by spinstand read/write testing. Discrete track patterned regions show smaller magnetic track width and better signal separation between adjacent tracks and therefore higher track density than that of nonpatterned continuous media as a result of reduced side fringe effect and edge noise. We found that, at a designed groove depth of 4-8 nm, the shallow FIB etched grooves already provide good isolation between adjacent tracks, indicating the superiority of ion beam induced modification of magnetic properties in film media over physical modification of disk surface topography. This has implications for discrete track recording and media fabrication.  相似文献   

5.
Previous reports have detailed the fabrication of media able to support high density magnetic recording in both longitudinal and perpendicular formats by the global rapid thermal processing of sputtered non-magnetic precursor films. During processing in this manner a magnetic element is released from its nitride and agglomerates to form a random near mono-dispersion of magnetic nano-particles. Here we explore, primarily through modelling and simulation, the feasibility of processing similarly formulated precursor media not globally but locally. We investigate the potential of using conducting nano-probe tips to produce, via electro-thermal (Joule) heating, a nano-patterned recording medium in the form of regular arrays of magnetic islands in a non-magnetic host. In the first instance we concentrate on the simplest cobalt based precursor medium for which both initial simulation and experimental studies indicate the formation of magnetic islands with dimensions of the order of the tip diameter; this is relatively straightforward. The results signify that if practical production scenarios can be devised to produce technologically significant areas of recording media by the rapid multi-probe repetition of this technique, then processing in this manner offers a promising route to areal recording densities of perhaps 5 Terabit/in(2) even with the simplest cobalt media. We also note that the electro-thermal processing method is potentially extendable to the production of a wide variety of magnetic materials (e.g.?PtCo, FeCo, NiFe alloys) and, applied via electrical nano-imprinting type techniques, to the production of a wide variety of patterned structures.  相似文献   

6.
Fabrication processes of arrayed magnetic nanodots for the use of patterned magnetic recording media were reviewed. One candidate for the patterned media is ordered assemble of magnetic nanoparticles, and the other is patterned magnetic thin films fabricated using various micro/nano scale machining processes. For the formation of patterned masks and molds, lithography processes as well as self-organized pattern formation are utilized. For the deposition processes of magnetic dots, electrochemical deposition processes were widely used. These fabrication processes are reviewed mainly from recent reports. The recording systems for the patterned media including probe-type-recording are also overviewed.  相似文献   

7.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

8.
The magnetic anisotropy of CoPtCr-SiO/sub 2/ perpendicular recording media, including higher energy terms, was studied as a function of film composition and seed layer materials. All series of CoPtCr films with various Cr content, deposited on Ru seed layers, show maximum values of total anisotropy K/sub u/ at 25-30 at%Pt. The maximum value for CoPt(Cr=0) films reaches /spl sim/15/spl times/10/sup 6/ erg/cm/sup 3/. The addition of SiO/sub 2/ to the CoPtCr films reduces the grain K/sub u/, however the grain K/sub u/ maintains a large value of 8/spl times/10/sup 6/ erg/cm/sup 3/ even when 10at%SiO/sub 2/ is added to (Co/sub 90/Cr/sub 10/)/sub 80/Pt/sub 20/, for instance, which indicates the high-potential thermal stability. Theoretical calculations for media designs of 400 Gbits/in/sup 2/ revealed that the ratio of the high-energy anisotropy term K/sub u2/ to K/sub u1/(K/sub u/=K/sub u1/+K/sub u2/) is required to be 0.2-0.35 to enhance the energy barrier for the remanent state, without a notable change in switching field. The films deposited on Ru seed layers were found to show negligibly small K/sub u2/ values, however, the values of K/sub u1/ and K/sub u2/ vary significantly with the seed layer material used. K/sub u1/ decreases almost linearly as the K/sub u2/ value increases. It is concluded that CoPtCr films have a sufficient potential in the values of K/sub u1/ and K/sub u2/ for high-density perpendicular media.  相似文献   

9.
Using a semianalytic technique based on the work of Agazzi and Seshadri, we compare the performance of PR1, PR4, and EPR4 partial response schemes on a magnetic recording channel. The technique includes the effect of imperfect equalization and, in the PR4 case, the effect of employing two interleaved Viterbi detectors. Assuming the Lorentzian channel model and superposition, we use this technique to compare these signaling schemes at medium and high recording densities. It is observed that, even with the trivial DC-free code employed, PR1 is superior to PR4 at recording densities beyond about Sc=2.4 and superior to EPR4 beyond about Sc=2.9. In addition, PR1 lends itself to difference metric Viterbi detection. Our analytical results are supported by computer simulations  相似文献   

10.
Thermal effect limits in ultrahigh-density magnetic recording   总被引:4,自引:0,他引:4  
In current longitudinal magnetic recording media, high areal density and low noise are achieved by statistical averaging over several hundred weakly coupled ferromagnetic grains per bit cell. Continued scaling to smaller bit and grain sizes, however, may prompt spontaneous magnetization reversal processes when the stored energy per particle starts competing with thermal energy, thereby limiting the achievable areal density. Charap et al. have predicted this to occur at about 40 Gbits/in2. This paper discusses thermal effects in the framework of basic Arrhenius-Neel statistical switching models. It is emphasized that magnetization decay is intimately related to high-speed-switching phenomena. Thickness-, temperature- and bit-density dependent recording experiments reveal the onset of thermal decay at “stability ratios” (KuV/KBT)0 ≃35 ± 2. The stability requirement is grain size dispersion dependent and shifts to about 60 for projected 40 Gbits/in 2 conditions and ten-year storage times. Higher anisotropy and coercivity media with reduced grain sizes are logical extensions of the current technology until write field limitations are reached. Future advancements will rely on deviations from traditional scaling. Squarer bits may reduce destabilizing stray fields inside the bit transitions. Perpendicular recording may shift the onset of thermal effects to higher bit densities. Enhanced signal processing may allow signal retrieval with fewer grains per bit. Finally, single grain per bit recording may be envisioned in patterned media, with lithographically defined bits  相似文献   

11.
12.
Recording design alternatives are analyzed for 100 1 Gbit/in2 vertical and horizontal patterned media, written at 1 Gbit/s with one and two pole heads. Bit write fields, disturb fields, and switching speeds are calculated as part of a system analysis of the theoretical potential of patterned media to address possible physics limits for conventional “featureless” continuous film media (these include thermal decay, nonlinear transition shift and transition noise, and high writer pole Ms requirements near the limit of known materials). The patterned media “bits” are assumed oriented vertically or horizontally by crystalline anisotropy, and smaller than 100 nm to allow single-domain, 1/2 ns switching. MsHc V/kT>500, implying thermal stability including media demagnetization and write head remanent fields, are nearly an order of magnitude areal density extensibility beyond 100 Gbit/in2 with present-day head/media magnetic requirements  相似文献   

13.
Higher areal density for magnetic recording is needed to provide larger storage capacities on harddisk drives. However, as the recording bit size of traditional magnetic recording materials (such as Co/Cr) approaches 10 nm, the magnetic direction of each recording bit would become unstable at room temperature due to thermal fluctuation. To solve this problem, efforts have been made using two methods: one method is to replace the disk media with new materials possessing higher magnetic anisotropy which would lead to better thermal stability; and the second one is to employ different configurations for the recording layer. FePt with patterned media configuration is a combination of these two methods. In this paper we review some novel and interesting methods of patterning FePt for magnetic recording, including thermal patterning, self-assembly patterning, and lithography patterning.  相似文献   

14.
The superiority of perpendicular recording derives from the very low demagnetization at high bit densities, and from the nearly perfect writing process when a single pole head is used in combination with a double layer medium. Recent experiments have shown that it is possible to record very high densities in the longitudinal recording mode by scaling down all the critical parameters to extremely small values. However, such extreme scaling will very likely be accompanied by some very difficult problems from the point of view of media imperfections, defects, yields and costs. The power of perpendicular recording derives in part from the ability to attain these very high bit densities without resort to extreme scaling of the critical system parameters. There is little doubt that in the long run perpendicular recording will predominate because of its superior performance derived from the advantages stated above. For the next several years, however, we have to look to new and improved particulate media (to satisfy the majority of the demands) which can be fabricated by using existing large capacity continuous web coating facilities. The best choice for satisfying the requirements of these tape-related large volume applications is to utilize the new particulate media which support a large degree of perpendicular magnetization (isotropic-high squareness, and perpendicular anisotropy particulate dispersions) rather than employing very high coercivity longitudianally optimized particulate media.  相似文献   

15.
We describe the design and implementation of a high-data-rate high-capacity digital holographic storage disk system. Various system design trade-offs that affect density and data-rate performance are described and analyzed. In the demonstration system that we describe, high-density holographic recording is achieved by use of high-resolution short-focal-length optics and correlation shift multiplexing in photopolymer disk media. Holographic channel decoding at a 1-Gbit/s data rate is performed by custom-built electronic hardware. A benchmark sustained optical data-transfer rate of 10 Gbits/s has been successfully demonstrated.  相似文献   

16.
We present a comprehensive analysis of the areal density potential of a bit-patterned media recording. The recording performance is dominated by written-in errors rather than traditional signal-to-noise considerations. Written-in errors are caused by statistical fluctuations of the magnetic properties and the locations of the individual dots. The highest areal densities are obtained with a combination of a pole head, a soft magnetic underlayer, and a storage medium of the composite type. Areal density scenarios of up to 5 Tb/in$^2$are analyzed.  相似文献   

17.
Three types of perpendicular recording media were compared using simulations. Exchange coupled composite (ECC) type media could support minimum track pitches up to 18 nm less than a single layer medium, allowing significantly higher areal recording densities. The recording performance of all media was highly susceptible to grain-to-grain variations of uniaxial anisotropy Ku and, in the case of ECC media, to variations in the interlayer coupling strength. Areal densities of around 500 Gb/in2 should be achievable using current technologies, higher densities require improved manufacturing tolerances  相似文献   

18.
A new magnetic recording system is evaluated that includes the single-pole head, a new medium design, and the soft underlayer of perpendicular recording. The proposed medium consists of perpendicular grains with anisotropy directions tilted optimally about 45/spl deg/ with respect to the perpendicular direction. Here, focus is on the tilt angle at 45/spl deg/ in the crosstrack direction, including a small but typical dispersion. The write pole consists of a tapered-neck single-pole head with a very small throat height that yields maximized write fields without increased edge track degradation. The advantages of tilted perpendicular recording are discussed using theoretical and numerical micromagnetic analyses. This design achieves a much higher signal-to-noise ratio (SNR) than conventional recording, because it is less sensitive to medium orientation distributions and, for the same thermal decay, can utilize media with much smaller grain sizes. The switching speed is much more rapid due to increased recording torque. Estimated recording limits for tilted perpendicular recording with a medium-jitter SNR of 17 dB are beyond densities of 1 Tb/in/sup 2/ and data rates of 1 Gb/s.  相似文献   

19.
We fabricated bit-patterned media (BPM) at densities as high as 3.3 Tbit/in(2) using a process consisting of high-resolution electron-beam lithography followed directly by magnetic film deposition. By avoiding pattern transfer processes such as etching and liftoff that inherently reduce pattern fidelity, the resolution of the final pattern was kept close to that of the lithographic step. Magnetic force microscopy (MFM) showed magnetic isolation of the patterned bits at 1.9 Tbit/in(2), which was close to the resolution limit of the MFM. The method presented will enable studies on magnetic bits packed at ultra-high densities, and can be combined with other scalable patterning methods such as templated self-assembly and nanoimprint lithography for high-volume manufacturing.  相似文献   

20.
The variation of demagnetization effects with media parameters for longitudinal contact recording has been investigated. Co-Re thin film metal media were sputtered onto flexible polyimide substrates. It was found that when the film thickness δ and demagnetizaton parameterB_{r}delta/H_{c}were less than 2 μ inch and 15 μinch, respectively, demagnetization-free longitudinal recording was obtained up to the recording density of 75 KFRPI at the head-to-medium spacing of 3 μ inch. As a result, recording densities of D50over 50 KFRPI were achieved with a 20 μinch gap head. For thicker films with larger demagnetization parameters, i.e.,delta geq 4 muinch andB_{r}delta/H_{c} geq 40 muinch, the longitudinal recording process approached the demagnetization limit. The results show that (with existing head field gradients) improvement in linear density of thin metal media can be obtained by an approximate factor of two before the demagnetization limit is reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号