共查询到14条相似文献,搜索用时 78 毫秒
1.
稀疏分量分析在欠定盲源分离问题中的研究进展及应用 总被引:3,自引:0,他引:3
伴随着国内外对盲源分离问题研究的日益深入,在独立分量分析等经典算法之外逐步发展出了许多新的算法.稀疏分量分析就是其中有效的方法之一,它利用信号的稀疏分解,克服了独立分量分析非欠定性的要求,解决了欠定情况下的盲源分离问题.本文将以稀疏分量分析为主要对象,归纳总结了近期的研究进展. 相似文献
2.
3.
振动传感器接收的信号往往包含不同部件的振动信号和环境噪声,为了从少量振动传感器的接收信号中识别信号源数和各频率分量,提出了一种基于稀疏分量分析的欠定盲源分离方法。该方法首先对混合信号进行时频变换,通过主成分分析提取各个时频点邻域的局部主成分,筛选出单源域特征数据。然后利用余弦距离改进聚类验证技术与模糊聚类算法,对振动源个数进行识别、对聚类参数进行更新,获得信号源数和混合矩阵估计。最后用一系列最小二乘法从混合信号对应的时频点中抽取出源信号。通过仿真实验和实测数据实验验证了本文方法的有效性和稳健性,相比经典时频比方法得到了更稳健、更精确的分离结果,这有助于对机械振动源进行识别和定量评估,以方便后续进行机械状态监测和减振降噪处理。 相似文献
4.
基于ICA的雷达信号欠定盲分离算法 总被引:2,自引:0,他引:2
该文针对源信号时域和频域不充分稀疏的情况,提出了欠定盲源分离中估计混合矩阵的一种新方法。该方法对等间隔分段的观测信号应用独立分量分析(ICA)的盲分离算法获得多个子混合矩阵,然后对其分选剔除了不属于原混合矩阵的元素,最后利用C均值聚类的学习算法获得对混合矩阵的精确估计,解决了源信号在时域和频域不充分稀疏的情况下准确估计混合矩阵的问题。在估计出混合矩阵的基础上,利用基于稀疏分解的统计量算法分离出源信号。由仿真结果,以及与传统的K均值聚类,时域检索平均算法对比的实验结果说明了该文算法的有效性和鲁棒性。 相似文献
5.
为解决弱稀疏语音信号的欠定盲分离问题,根据语音信号的部分W-分离正交性,提出一种基于单源主导区间的混合矩阵盲估计方法。该方法根据单源主导区间的性质,通过二元行矢量提取单源观测样本,对单源观测样本进行K均值聚类和主成分分析来估计混合矩阵。仿真结果表明,提出的方法可有效提高分离语音的性能,与直接利用K-PCA方法相比,分离语音的平均信噪比提高了10 dB左右。 相似文献
6.
7.
8.
9.
10.
11.
12.
13.
介绍了两种语音分离的算法--独立成分分析(ICA)方法和稀疏混合模型方法.在信号源个数小于或等于观察信号个数的情况下,使用独立成分分析方法;在信号源个数大于观察信号个数的情况下,使用稀疏混合模型方法.在各种情况下,进行了大量实验,结果表明,在信号源个数不确定的情况下能较好地分离出原始的语音信号. 相似文献