首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins, respectively, with an average channel-to-channel migration time reproducibility of 2.8%. The average resolution obtained for mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins was 4.6, 1.0, 0.9, and 1.0, respectively. To the best of our knowledge, this report is the first to describe a multichannel microchip electrophoresis device with integrated contact conductivity sensor array.  相似文献   

2.
Du M  Zhou F 《Analytical chemistry》2008,80(11):4225-4230
The combination of high-performance liquid chromatography (HPLC) with surface plasmon resonance (SPR) for continuous separation and label-free detection of protein samples is described. The detection was realized by electrostatic adsorption of proteins bearing positive and negative charges onto chemically modified SPR sensors in two separate SPR channels. One SPR channel is coated with carboxymethylated dextran which facilitates the detection of positively charged proteins, whereas the other, devoted to the monitoring of negatively charged proteins, is covered with ethylenediamine molecules attached onto a dextran surface. Renewal of the sensor surface in the channels can be accomplished by introducing regeneration solutions through two six-port valves. The coupled technique (HPLC-SPR) was assessed for its analytical figures of merit and applied to the quantification of lysozyme in human milk samples. Unlike the SPR detection of bulk solution refractive index changes during chromatographic peak elutions, the highest sensitivity of SPR is retained in this work since the measurement is performed at the SPR sensor surface where the evanescent field is the strongest. The renewable SPR detection of continuous separations is reproducible and versatile and does not require the separated proteins to contain chromophores or to be prelabeled with a tag (e.g., a redox-active or fluorescent molecule). Such generality makes SPR complementary to other types of chromatographic detectors.  相似文献   

3.
We discovered that a protein concentration device can be constructed using a simple one-layer fabrication process. Microfluidic half-channels are molded using standard procedures in PDMS; the PDMS layer is reversibly bonded to a glass base such as a microscope slide. The microfluidic channels are chevron-shaped, in mirror image orientation, with their apexes designed to pass within approximately 20 microm of each other, forming a thin-walled section between the channels. When an electric field is applied across this thin-walled section, negatively charged proteins are observed to concentrate on the anode side of it. About 10(3)-10(6)-fold protein concentration was achieved in 30 min. Subsequent separation of two different concentrated proteins is easily achieved by switching the direction of the electric field in the direction parallel to the thin-walled section. We hypothesize that a nanoscale channel forms between the PDMS and the glass due to the weak, reversible bonding method. This hypothesis is supported by the observation that, when the PDMS and glass are irreversibly bonded, this phenomenon is not observed until a very high E-field was applied and dielectric breakdown of the PDMS is observed. We therefore suspect that the ion exclusion-enrichment effect caused by electrical double layer overlapping induces cationic selectivity of this nanochannel. This simple on-chip protein preconcentration and separation device could be a useful component in practically any PDMS-on-glass microfluidic device used for protein assays.  相似文献   

4.
Demonstrated in this article is that a palladium metal film can be applied to decouple the electric circuitry of electrochemical detection from that of the electrophoretic separation in an electrophoresis chip. The Pd solid-state field decoupler, as well as the working electrodes, is thermally evaporated onto the plastic chip and oriented vertically across the separation channel. After the sample zones flow over the Pd decoupler, their electrochemical response is measured at working electrodes in the downstream pathway. Because the electrodes are on the separation channel, the electrode channel alignment is no longer a problem. For a separation channel of roughly 200 microm in width and 75 microm in depth in 10 mM phosphate (pH 5.1), the noise level at the working electrode is < 15 pA at an electric field of 570 V/cm.  相似文献   

5.
A new preconcentration device was developed for analysis of proteins by capillary electrophoresis (CE). The microfluidic device uses an electric field to capture proteins that pass through the system. The capture zone is maintained in the flow stream by the interaction between hydrodynamic and electrical forces. The device consists of a flow channel made of PEEK tubing with two electrical junctions, each of which is covered with a conductive membrane. A syringe pump provides the flow stream and also allows the injection of up to 13.5 microL of a dilute sample. The system can be easily connected to a CE device postcapture for off-line preconcentration of proteins. For the proteins used in this study, preconcentration factors up to 40-fold can be achieved. CE detection limits for bovine carbonic anhydrase, alpha-lactalbumin and beta-lactoglobulins A and B were in the nanomolar range using UV detection at 200 nm. Preconcentration is dependent on both time and initial protein concentration. We show the possibility of using an off-line fluidic preconcentrator device employing counterflow capillary electrophoresis with minimum sample manipulation, achieving detection limits similar to on-line approaches.  相似文献   

6.
Single DNA molecules confined to nanoscale fluidic channels extend along the channel axis in order to minimize their conformational free energy. When such molecules are forced into a nanoscale fluidic channel under the application of an external electric field, monomers near the middle of the DNA molecule may enter first, resulting in a folded configuration with less entropy than an unfolded molecule. The increased free energy of a folded molecule results in two effects: an increase in extension factor per unit length for each segment of the molecule, and a spatially localized force that causes the molecule to spontaneously unfold. The ratio of this unfolding force to hydrodynamic friction per DNA contour length is measured in nanochannels with two different diameters.  相似文献   

7.
Xiao D  Le TV  Wirth MJ 《Analytical chemistry》2004,76(7):2055-2061
The electrophoresis of proteins was investigated using poly(dimethylsiloxane) (PDMS) microfluidic chips whose surfaces were modified with polyacrylamide through atom-transfer radical polymerization. PDMS microchips were made using a glass replica to mold channels 10 microm high and 30 microm wide, with a T-intersection. The surface modification of the channels involved surface oxidation, followed by the formation of a self-assembled monolayer of benzyl chloride initiators, and then atom-transfer radical polymerization to grow a thin layer of covalently bonded polyacrylamide. The channels filled spontaneously with aqueous buffer due to the hydrophilicity of the coating. The resistance to protein adsorption was studied by open-channel electrophoresis for bovine serum albumin labeled with fluorophor. A plate height of 30 microm, corresponding to an efficiency of 33 000 plates/m, was obtained for field strengths from 18 to 889 V/cm. The lack of dependence of plate height on field strength indicates that there is no detectable contribution to broadening from adsorption. A 2- to 3-fold larger plate height was obtained for electrophoresis in a 50-cm polyacrylamide-coated silica capillary, and the shape of the electropherogram indicated the efficiency is limited by a distribution of species. The commercial capillary exhibited both reversible and irreversible adsorption of protein, whereas the PDMS microchip exhibited neither. A separation of lysozyme and cytochrome c in 35 s was demonstrated for the PDMS microchip.  相似文献   

8.
We have established the nanofabrication technique for constructing nanopillars with high aspect ratio (100-500 nm diameter and 500-5000 nm tall) inside a microchannel on a quartz chip. The size of pillars and the spacing between pillars are designed as a DNA sieving matrix for optimal analysis of large DNA fragments over a few kilobase pairs (kbp). A chip with nanopillar channel and simple cross injector was developed based on the optimal design and applied to the separation of DNA fragments (1-38 kbp) and large DNA fragments (lambda DNA, 48.5 kbp; T4 DNA, 165.6 kbp) that are difficult to separate on conventional gel electrophoresis and capillary electrophoresis without a pulsed-field technique. DNA fragments ranging from 1 to 38 kbp were separated as clear bands, and furthermore, the mixture of lambda DNA and T4 DNA was successfully separated by a 380-microm-long nanopillar channel within only 10 s even under a direct current (dc) electric field. Theoretical plate number N of the channel (380-1450 microm long) was 1000-3000 (0.7 x 10(6)-2.1 x 10(6) plates/m). A single DNA molecule observation during electrophoresis in a nanopillar channel revealed that the optimal nanopillars induced T4 DNA to form a narrow U-shaped conformation during electrophoresis whereas lambda DNA kept a rather spherical conformation. We demonstrated that, even under a dc electric field, the optimal nanopillar dimensions depend on a gyration radius of DNA molecule that made it possible to separate large DNA fragments in a short time.  相似文献   

9.
Plecis A  Chen Y 《Analytical chemistry》2008,80(10):3736-3742
A microfluidic analogy of the electric Wheatstone Bridge has been developed for electrokinetic study of miscellaneous liquid-solid interfaces. By using an optimized glass-PDMS-glass device technology, microfluidic channels with well-controlled surface properties can be fabricated, forming an "H" shaped fluidic network. After solving a set of linear equations, the electro-osmotic flow rate in the center channel can be deduced from indirect measurement of flow rates in the lateral channels. Experimentally, we demonstrate that the electro-osmotic mobility can be monitored every 30 s with accuracy better than 3% for a large dynamic range of electric fields. The results obtained with a borosilicate glass (D-263) and several standard biological buffers are also shown to illustrate the capability of this high throughput method.  相似文献   

10.
We report the development of an air-stable, supported membrane array by use of photolithography for label-free detection of lipid-protein interactions. Phosphoinositides and their phosphorylated derivatives (PIPs) were studied for their binding properties to proteins with lipid microarray in combination with surface plasmon resonance imaging (SPRi). We have demonstrated a simple method to fabricate lipid arrays using photoresist and carried out a series of surface characterizations with SPRi, ac impedance, cyclic voltammetry, and fluorescence microscopy to validate the array quality and lipid bilayer formation. A number of lipid compositions have been tested for the robustness of resulting membranes when undergoing dehydration and rehydration procedures, and the 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/poly(ethylene glycol)-phosphatidylethanolamine (DOPC+/PEG-PE) system stands out as the best performer that yields the recovery to within 2% of the original state according to SPR sensorgrams. Limits of detection on the dehydrated/rehydrated DOPC+/PEG-PE membranes were determined to be 33 nM for avidin binding to biotinylated lipids, 73.5 nM for cholera toxin to GM1, and 25 nM for PtdIns(4,5)P2-binding protein (P(4,5)BP) to PtdIns(4,5)P2 lipid, respectively. These results demonstrate the suitability and sensitivity of this membrane for constructing membrane arrays for SPRi analysis under ambient conditions. With the use of this addressable and functional lipid membrane array, the screening of specific lipid-protein interactions has been conducted. Strong and specific interactions between P(4,5)BP and PtdIns(4,5)P2/DOPC+/PEG-PE membrane were observed as expected, while cross reactions were spotted for P(4,5)BP/PtdIns(4)P and avidin/GM1 at varied degrees. The air-stable membrane array demonstrated here presents a simple, effective approach for constructing functional membrane surfaces for screening applications, which opens a new avenue for the label-free study of membrane proteins and other forms of lipid-membrane interactions.  相似文献   

11.
Electrokinetic transport in fluidic channels facilitates control and separation of ionic species. In nanometer-scale electrokinetic systems, the electric double layer thickness is comparable to characteristic channel dimensions, and this results in nonuniform velocity profiles and strong electric fields transverse to the flow. In such channels, streamwise and transverse electromigration fluxes contribute to the separation and dispersion of analyte ions. In this paper, we report on analytical and numerical models for nanochannel electrophoretic transport and separation of neutral and charged analytes. We present continuum-based theoretical studies in nanoscale channels with characteristic depths on the order of the Debye length. Our model yields analytical expressions for electroosmotic flow, species transport velocity, streamwise-transverse concentration field distribution, and ratio of apparent electrophoretic mobility for a nanochannel to (standard) ion mobility. The model demonstrates that the effective mobility governing electrophoretic transport of charged species in nanochannels depends not only on electrolyte mobility values but also on zeta potential, ion valence, and background electrolyte concentration. We also present a method we term electrokinetic separation by ion valence (EKSIV) whereby both ion valence and ion mobility may be determined independently from a comparison of micro- and nanoscale transport measurements. In the second of this two-paper series, we present experimental validation of our models.  相似文献   

12.
The fabrication of fluidic channels with dimensions smaller than 1 microm is described and characterized in respect to their use for detection of individual DNA molecules. The sacrificial layer technique is used to fabricate these devices as it provides CMOS-compatible materials exhibiting low fluorescence background. It also allows creating microfluidics circuitry of submicrometer dimensions with great control. The small dimensions facilitate single molecule detection and minimize events of simultaneous passage of more than one molecule through the measurement volume. The behavior of DNA molecules inside these channels under an applied electrical field was first studied by fluorescence correlation spectroscopy using M13 double-stranded DNA. A linear relationship between the flow speed and applied electric field across the channel was observed. Speeds as high as 5 mm/s were reached, corresponding to only a few milliseconds of analysis time per molecule. The channels were then used to characterize a mixture of nine DNA fragments. Both the distribution and relative proportions of the individual fragments, as well as the overall concentration of the DNA sample, can be deduced from a single experiment. The amount of sample required for the analysis was approximately 10,000 molecules, or 76 fg. Other potential applications of these submicrometer structures for DNA analysis are discussed.  相似文献   

13.
Microfluidic electrophoresis devices were coupled on-line to microdialysis for in vivo monitoring of primary amine neurotransmitters in rat brain. The devices contained a sample introduction channel for dialysate, a precolumn reactor for derivatization with o-phthaldialdehyde, a flow-gated injector, and a separation channel. Detection was performed using confocal laser-induced fluorescence. In vitro testing revealed that the initial device design had detection limits for amino acids of approximately 200 nM, relative standard deviation of peak heights of 2%, and separations within 95 s with up to 30,200 theoretical plates when applying an electric field of 370 V/cm. A second device design that allowed electric fields of 1320 V/cm to be applied while preserving the reaction time allowed separations within 20 s with up to 156,000 theoretical plates. Flow splitting into the electrokinetic network from hydrodynamic flow in the sample introduction channel was made negligible for sampling flow rates from 0.3 to 1.2 microL/min by placing a 360-microm-diameter fluidic access hole that had flow resistance (0.15-7.2) x 10(8)-fold lower than that of the electrokinetic network at the junction of the sample introduction channel and the electrokinetic network. Using serial injections, the device allowed the dialysate stream to be analyzed at 130-s intervals. In vivo monitoring was demonstrated by using the microdialysis/microfluidic device to record glutamate concentrations in the striatum of an anesthetized rat during infusion of the glutamate uptake inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid. These results prove the feasibility of using a microfabricated fluidic system coupled to sampling probes for chemical monitoring of complex media such as mammalian brain.  相似文献   

14.
A multiple-depth micro free-flow electrophoresis chip (mu-FFE) has been fabricated with a 20-microm-deep separation channel and 78-microm-deep electrode channels. Due to the difference in channel heights, the linear velocity of buffer in the electrode channels is approximately 15 times that of the buffer in the separation channel. Previous mu-FFE devices have been limited by electrolysis product formation at the electrodes. These electrolysis products, manifested as bubbles, decreased the electric field and disrupted the buffer flow profile, limiting performance and preventing continuous operation. Using channel depth to control buffer flow over the electrodes and in the separation channel effectively removes electrolysis products, allowing continuous operation. The linear velocities in the channels were confirmed using particle velocimetry and compared well with values predicted using lubrication theory. A separation potential of 645 V could be applied before significant Joule heating was observed. This corresponded to an electric field of 586 V/cm in the separation channel, a 4-fold increase over our previous design. A separation of fluorescent standards was demonstrated using the new mu-FFE device. Resolution increased by a factor of 1.3 over our previous design, even when operated under similar conditions, suggesting that effective removal of electrolysis products is more important than originally thought.  相似文献   

15.
Surface plasmon resonance imaging (SPRi) was used as the transduction principle for the development of optical-based sensing for transgenes detection in human cell lines. The objective was to develop a multianalyte, label-free, and real-time approach for DNA sequences that are identified as markers of transgenosis events. The strategy exploits SPRi sensing to detect the transgenic event by targeting selected marker sequences, which are present on shuttle vector backbone used to carry out the transfection of human embryonic kidney (HEK) cell lines. Here, we identified DNA sequences belonging to the Cytomegalovirus promoter and the Enhanced Green Fluorescent Protein gene. System development is discussed in terms of probe efficiency and influence of secondary structures on biorecognition reaction on sensor; moreover, optimization of PCR samples pretreatment was carried out to allow hybridization on biosensor, together with an approach to increase SPRi signals by in situ mass enhancement. Real-time PCR was also employed as reference technique for marker sequences detection on human HEK cells. We can foresee that the developed system may have potential applications in the field of antidoping research focused on the so-called gene doping.  相似文献   

16.
This paper presents a novel device for the dielectrophoretic manipulation of particles and cells. A two-level isotropic etch of a glass substrate was used to create three-dimensional ridge-like structures in micrometer-sized channels. Due to the insulating properties of glass, locally patterned regions of nonuniform electric field form near the ridges when a dc field is applied along the channel. The ridges are designed using the method of faceted prisms, such that substantially uniform fields are produced on each side of the faceted interfaces that form each ridge. The dielectrophoretic force that results from the electric field gradient near the ridges is used to affect particle motion parallel to the ridges in the absence of a bulk pressure-driven flow. Trapping and deflection of particles and continuous concentration and separation of Bacillus subtilis from a two-component sample mixture are demonstrated. The flow of B. subtilis is restricted to a selected channel of a planar, multichannel device as a result of negative dielectrophoresis arising from the presence of the insulating ridges when the applied electric field exceeds a threshold of 30 V/mm. Dielectrophoresis has a negligible impact on 200-nm-diameter polystyrene particles under the same conditions.  相似文献   

17.
This paper demonstrates the ability to use capillary electrophoresis (CE) separation coupled with laser-induced fluorescence for analyzing the contents of single femtoliter-volume aqueous droplets. A single droplet was formed using a T-channel (3 microm wide by 3 microm tall) connected to microinjectors, and then the droplet was fluidically moved to an immiscible boundary that isolates the CE channel (50 microm wide by 50 microm tall) from the droplet generation region. Fusion of the aqueous droplet with the immiscible boundary effectively injects the droplet content into the separation channel. In addition to injecting the contents of droplets, we found aqueous samples can be introduced directly into the separation channel by reversibly penetrating and resealing the immiscible partition. Because droplet generation in channels requires hydrophobic surfaces, we have also investigated the advantages to using all hydrophobic channels versus channel systems with patterned hydrophobic and hydrophilic regions. To fabricate devices with patterned surface chemistry, we have developed a simple strategy based on differential wetting to deposit selectively a hydrophilic polymer (poly(styrenesulfonate)) onto desired regions of the microfluidic chip. Finally, we applied our device to the separation of a simple mixture of fluorescein-labeled amino acids contained within a approximately 10-fL droplet.  相似文献   

18.
Integrating multiple analytical processes into microfluidic devices is an important research area required for a variety of microchip-based analyses. A microfluidic system is described that achieves preparative separations by intelligent fraction collection of attomole quantities of sample. The device consists of a main microfluidic channel used to perform electrophoresis, which is interconnected at 90 degrees to two vertically displaced channels via a nanocapillary array membrane. The membrane interconnect contains nanometer-diameter pores that provide fluidic communication between the channels. Sample injection and analyte collection are controlled by application of an electrical bias between the microfluidic channels across the nanocapillary array. After the separation, the automated transfer of the FITC-labeled Arg, Gln, and Gly bands occurs; a fluorescence detector located at the separation/collection channel interconnect is used to generate a triggering signal that initiates suitable voltages to allow near-quantitative transfer of analyte from the separation channel to the second fluidic layer. The ability to achieve such sample manipulations from mass-limited samples enables a variety of postseparation processing events.  相似文献   

19.
A novel approach to integrating a buffer ion-permeable membrane in a poly(glycidyl methacrylate-co-methyl methacrylate) micro electric field gradient focusing (muEFGF) device is described. A weir structure on which the membrane was positioned was fabricated between the separation channel and field gradient-generating channel. Before formation of the membrane, the surface of the polymeric microdevice was treated for covalent bonding of the membrane. Following surface modification, a prepolymer solution containing poly(ethylene glycol) acrylate/methacrylate and Tris-HCl buffer was loaded into the microdevice. Low-pressure nitrogen gas was then purged through the separation and field gradient-generating channels to remove the prepolymer solution from these channels. Residual prepolymer solution was retained on the weir structure due to surface tension. Finally, the premembrane was cured in place on the weir using UV radiation. Using a muEFGF device, green fluorescent protein (GFP) was concentrated 4000-fold. Separation of GFP and R-phycoerythrin, and selective elution of GFP from a protein mixture containing GFP, FITC-labeled casein, and FITC-labeled hemoglobin were also demonstrated. It was found that the membrane conductivity and presence of carboxylic acid impurities in the membrane strongly affected the behavior of the muEFGF device.  相似文献   

20.
The potential of integration of functions in microfluidic chips is demonstrated by implementing on-chip preconcentration of proteins prior to on-chip protein sizing by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two polymeric elements-a thin (approximately 50 microm) size exclusion membrane for preconcentration and a longer (approximately cm) porous monolith for protein sizing-were fabricated in situ using photopolymerization. Contiguous placement of the two polymeric elements in the channels of a microchip enabled simple and zero dead volume integration of the preconcentration with SDS-PAGE. The size exclusion membrane was polymerized in the injection channel using a shaped laser beam, and the sizing monolith was cast by photolithography using a mask and UV lamp. Proteins injected electrophoretically were trapped on the upstream side of the size exclusion membrane (MW cutoff approximately 10 kDa) and eluted off the membrane by reversing the electric field. Subsequently, the concentrated proteins were separated in a cross-linked polyacrylamide monolith that was patterned contiguous to the size exclusion membrane. The extent of protein preconcentration is easily tuned by varying the voltage during injection or by controlling the sample volume loaded. Electric fields applied across the nanoporous membrane resulted in a concentration polarization effect evidenced by decreasing current over time and irreproducible migration of proteins during sizing. To minimize the concentration polarization effect, sieving gels were polymerized only on the separation side of the membrane, and an alternate electrical current path was employed, bypassing the membrane, for most of the elution and separation steps. Electrophoretically sweeping a fixed sample volume against the membrane yields preconcentration factors that are independent of protein mobility. The volume sweeping method also avoids biased protein loading from concentration polarization and sample matrix variations. Mobilities of the concentrated proteins were log-linear with respect to molecular weight, demonstrating the suitability of this approach for protein sizing. Proteins were concentrated rapidly (<5 min) over 1000-fold followed by high-resolution separation in the sieving monolith. Proteins with concentrations as low as 50 fM were detectable with 30 min of preconcentration time. The integrated preconcentration-sizing approach facilitates analysis of low-abundant proteins that cannot be otherwise detected. Moreover, the integrated preconcentration-analysis approach employing in situ formation of photopatterned polymeric elements provides a generic, inexpensive, and versatile method to integrate functions at chip level and can be extended to lowering of detection limits for other applications such as DNA analysis and clinical diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号