首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Numerous light rare earth elements (LREE) minerals containing Fe and P were processed by sulfuric acid roasting method, and the leaching solution mainly comprises LREE sulfate, Fe2(SO4)3, H3PO4, and H2SO4, however, the solubility data of LREE sulfates in this system is few. This work studies the solubility of LREE sulfates in independent LREE sulfate system RE2(SO4)3-Fe2(SO4)3-H3PO4-H2SO4 (RE = La, Ce, Pr or Nd) and mixed LREE sulfates system (La,Ce,Pr,Nd)2(SO4)3-Fe2(SO4)3-H3PO4-H2SO4 at different temperature (25–65 °C) and concentrations of Fe2(SO4)3 (Fe2O3, 0–50.13 g/L), H2SO4 (0.5 mol/L), and H3PO4 (P2O5, 20.34 g/L) based on the industrial operating condition at low liquid and solid ratio 2:1. The solubility of each LREE sulfate in the independent system (La2O3, 12.25–20.88 g/L; CeO2, 41.93–62.35 g/L; Pr6O11, 37.34–56.69 g/L; Nd2O3, 26.60–37.63 g/L) is much higher than that of the mixed system (La2O3, 6.95–11.03 g/L; CeO2, 10.63–21.51 g/L; Pr6O11, 11.56–20.36 g/L; Nd2O3, 12.36–19.79 g/L) under the same other conditions. The results also indicate that, in the two systems, both Fe and the temperature have negative effects on the solubility of LREE sulfates. That may occur due to the complication reactions between the complexes of RESO4+ and Fe(SO4)2. However, the influence degree of temperature and iron concentration on the LREE sulfates solubility varies in the two systems and among different LREE species. This research is of theoretical significance for optimizing the conditions of the sulfuric acid process for recovering the LREE from the mixed LREE bearing minerals as well as the single LREE containing secondary rare earth scraps.  相似文献   

2.
Phosphate rock has been considered as one of the potential promising resources for rare earth elements(REEs). But the cost issues and the technical challenges caused by the low content of REEs in ores did hinder the further development of REEs recovery technologies. In order to explore a green process for the recovery of REEs from phosphate rock, this study investigates the effects of phosphoric acid concentration, liquid-to-solid ratio(L/S ratio), leaching time and temperature on the leaching efficiencies of the major components from phosphate rock. A REEs recovery of 94.3% and a phosphorus recovery of 95.3%are achieved under the optimal conditions of attacking phosphate rock using 30%P_2 O_5 acid with an L/S ratio of 10:1 and a stirring speed of 250 r/min at 25 ℃ for 4 h. Then,the selective precipitation of REEs with 81.3% REEs recovery is realized by heating up the leaching solution from 25 to 90 ℃ and keeping for4 h. Thereafter, more than 95% phosphoric acid is recovered by H_2 SO_4 and high purity gypsum, more than95% CaSO_4(tested by XRF), is also produced at the same time. Ultimately, a green process that leaches phosphate rock with H_3 PO_4, selectively precipitates REEs from leaching solution by heating up, recovers H_3 PO_4 with H2 SO4 is proposed. Compared with REE recovery in traditional processes, this process owns the merits of simple operation, energy saving and minimum wastes.  相似文献   

3.
The precipitation of the water-leaching solution of Baotou mixed rare earth(RE) concentrate roasted with sulfuric acid using ammonium bicarbonate for producing RE carbonate produces a mass of ammonia-nitrogen wastewater because of the relatively low solubility of rare earth sulfate.To solve the serious problem of ammonia-nitrogen pollution,new precipitators need to be developed urgently so as to meet the requirements of environmental protection and impurities content of the product(SO_4~(2-)1.8 wt% in RE carbonates products).In this paper,we studied the effects of feeding modes on the behavior of SO_4~(2-) during the preparation of light RE carbonate(RE=La,Ce,Pr,Nd) from their sulfate solutions using Mg(HCO_3)_2 as a precipitant.The results indicate that the contents of SO_4~(2+) in the La and Ce precipitates using positive feeding mode exceed 16 wt% because of the formation of La2(CO_3)_(2.15)(-SO_4)_(0.85)·4 H_2 O and Ce2(CO_3)_(2.15)(SO_4)_(0.85)·3 H_2 O,while those of the Pr and Nd precipitates are 4 wt%-5 wt%since they exist in the form of n-carbonate.The precipitates prepared using synchronous feeding mode are all RE carbonate with only 4 wt%-5 wt% of SO_4~(2-) enclosed in the precipitation.The content of SO_4~(2-) in the RE carbonate obtained using reverse feeding mode is the lowest.Among them,the content of SO_4~(2-) in La precipitate is only 1.40 wt%.Both synchronous and reverse feeding modes can effectively reduce the content of SO_4~(2-)in RE carbonate,which provides theoretical guidance for the preparation of qualified light RE carbonate products by Mg(HCO_3)_2 precipitation method.  相似文献   

4.
In acid treatment technology of Baotou mixed rare earth ore,large quantities of ammonia-nitrogen wastewater are produced in the step of ammonium bicarbonate precipitation to transform rare earth sulfate.In this paper,we adopted a green precipitant magnesium bicarbonate(Mg(HCO3)2) to substitute ammonium bicarbonate to eliminate ammonia-nitrogen pollution.The effects of n(HCO3-):n(RE3+),aging temperature and aging time on the crystallization u...  相似文献   

5.
Solution equilibrium calculations were performed in this study to understand the impact of contaminant metal ions on the precipitation efficiency of selected ra...  相似文献   

6.
The presented study aims to extend the knowledge of toxicological profile of rare earth elements salts(REEs).The basal toxicity test performed comprised assessment of cytotoxicity(3 T3 Balb/c Neutral Red Uptake Test)that allows for calculation of LD50(rats)on the basis of the concentration which leads to a50%reduction in cell growth(IC50).Environmental toxicity was addressed by the Tubifex tubifex(T.t.)express test.The in vitro skin irritation(OECD TG 439)and skin corrosion tests(OECD TG 431)utilizing the 3 D in vitro reconstructed human epidermal model EpiDerm(MatTek IVSL,SK)were used for assessment of skin irritation and corrosion potential hazard of REEs.Mutagenic effects were determined using the bacterial reverse mutation assay(Ames Test)on 5 Salmonella typhimurium strains with and without metabolic activation(OECD TG 471).Endocrine disruption was evaluated by means of a yeastbased assay YES/YAS(Xenometrix,CH).Skin sensitization was assessed using the LuSens assay,based on a genetically modified human keratinocyte cell line(OECD TG 442 D).The tested REEs have no potential of mutagenicity or skin sensitization,exhibit very weak endocrine disruption potential and only exceptional local irritation/corrosion effects for thulium(Ⅲ)chloride anhydrous,but have acute and chronic toxic effects on the aquatic environment.  相似文献   

7.
Tb~(3+),Dy~(3+)-co-doped Ca_9 Tb_xDy_(1-x)(PO_4)_5(SiO_4)F_2 phosphors were prepared via high-temperature solidphase reaction method and the potential application in optical temperature measurements due to their color-tunable property was investigated in detail.The photoluminescence emission(PL) and photoluminescence excitation(PLE) spectra results show that the as-prepared phosphors exhibit both Tb~(3+) and Dy~(3+) emissions at 546 nm(~5 D_4-~7 F_5 transition of Tb~(3+)) and 587 nm(~4 F_(9/2)-~6 H_(13/2) transition of Dy~(3+)) upon376 nm excitation,respectively.In addition,the fluorescence decay analysis shows that the lifetime of the Tb3+emission rapidly decreases,which confirms the energy transfer existence between Dy~(3+) and Tb~(3+).Under 376 nm excitation,the temperature dependence of the fluorescence intensity ratios for the dualmission bands peaked at 546 and 587 nm was studied in the temperature range from 303 to 573 K.The results show that with the increase of Dy~(3+) concentration,the relative sensitivity first increases and then decreases,what's more,the maximum relative sensitivity is 3.142×10~(-3)%/K for Ca_9 Tb_xDy_(1-x)(PO_4)_5(SiO_4)-F_2(x=0.4).As a consequence,this preliminary study provides a novel method for exploring the novel thermo meters.  相似文献   

8.
Ion-absorption rare earth ores are an important mineral resource in China. Nowadays, the unauthorized mining has become a serious problem, resulting in severe water pollution and the wastage of rare earth elements (REEs). Being able to estimate the concentration of dissolved REEs in water bodies near mines is essential for tackling this environmental problem. Conventionally, quantitative analyses of the contents of dissolved REEs are performed using laboratory-based techniques, which can be time consuming and costly. Spectral reflectance is a rapid and cost-effective means of characterizing the chemical compositions of light-absorbing materials. In this study, reflectance spectroscopy was performed on dissolved REEs, and the correlation between their reflectance characteristics and REE content was determined. A total of 50 aqueous media samples collected in south Jiangxi Province and 25 laboratory-produced aqueous media samples were tested, and their reflectance spectra and REE contents were measured using reflectance spectroscopy and inductively coupled plasma mass spectrometry, respectively. Next, the reflectance, differential reflectance, and absorption depth were analysed based on the REE content. Six diagnostic absorption features related to REEs are recognised in the visible and near-infrared wavelength regions, along with several smaller peaks. It indicates that the results of the absorption depth analysis are in accordance with the absorption spectra characteristics of the REEs, with the R2 value being higher than 0.97. The intensity of each of the six absorption bands exhibits a linear correlation to the total REE content. Therefore, linear regression models can be derived for estimating the total concentration of REEs in aqueous media samples. What's more, the detection limit for REEs is determined to be about 30 μg/L. Thus, it can be concluded that reflectance spectroscopy is a suitable technique for estimating the concentration of dissolved REEs.  相似文献   

9.
Three-dimensional(3 D) graphene oxide-tris(4-aminophenyl)amine(GO-TAPA_(x:y)) composites with different GO-to-TAPA mass ratios(x:y) were prepared by a facile one-step ultrasonic treatment.GOTAPA_(x:y) composites were characterized by scanning electron microscopy(SEM),nitrogen(N2)adsorption-desorption isotherms,Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS) and thermogravimetric analysis(TGA).Behavior and mechanism of GO-TAPA_(x:y)co mposites for the adsorption of rare earth elements(REEs) were investigated.The adso rption capacities of GO-TAPA_(1;2) composite for Yb~(3+),Er~(3+),Nd~(3+),La~(3+)and Y~(3+)are 30.88,26.52,20.60,11.24 and 10.52 mg/g,respectively.Effects of some important parameters including GO-to-TAPA mass ratios,contact time,reaction temperature and initial Yb3+concentration on the adsorption were evaluated in detail.FTIR spectral and XPS analyses show that the metal complexations and ion exchanges between nitrogen/oxygen-containing species of the adsorbents and REEs are involved in the adsorption procedure besides the conventional adsorption based on specific surface area,indicating the introduction of specific molecules onto GO is beneficial to its adsorption ability.The convenient reusability and applicability of GO-TAPA_(x:y) composites toward real samples also demonstrate their feasibility in the enrichment of REE ions.  相似文献   

10.
Rare earth elements(REEs) are valuable raw materials which are in great demand in modern high technology industries.Developing methods to produce/recover REEs from waste is significant to the national security of any developed country.This study was focused on investigating the use of supercritical CO2(sCO_2) to extract REEs from anthracite acid mine drainage(AMD).Four different mine drainage water source locations at Blaschak Coal Corp.in Pennsylvania,USA were selected for sample collection.An extraction process was developed and demonstrated for two of those water sources containing the highest concentration of REEs.A method involving metal ion coagulation,their dissolution from the sludge into a concentrated aqueous HNO_3 solution,complexation with organic ligands and sCO_2 extraction was developed to recover REEs from AMD.Specifically,sodium aluminate(NaAlO_2) was used as the coagulant to concentrate REEs from the AMD into a solid precipitate.Consequently,over 99%of the REEs in AMD is concentrated in the remaining sludge.During the coagulation process,the effects of pH and NaAlO_2 concentration on REE precipitation were investigated.Fuming nitric acid(HNO_3) was used to digest the pre-concentrated sludge and tributyl phosphate(TBP) was used to form REE/TBP/HNO_3,a non-polar complex with selected REEs,specifically,cerium(Ce),lanthanum(La) and neodymium(Nd).HNO_3 concentration and organic/aqueous phase ratio were considered as the variables to improve complexation efficiency.Dynamic extraction experiments using sCO_2 and REE/TBP/HNO_3 solutions were then conducted at optimal conditions of 60℃ and 20 MPa.The overall REE extraction efficiencies are found to increase with the atomic number of the REE.As a result,the average overall REE extraction efficiencies of 41.8%,40.1% and 58.2% for Ce,La and Nd,respectively,are obtained.The potential improvements in the overall extraction efficiency are also discussed.  相似文献   

11.
The first luminescence thermometer based on coordination compound of samarium and dysprosium is repo rted.High luminescence intensity and high signal resolution are reached thanks to the concentration quenching reduction due to the use of the trimetallic complexes of Sm-Dy-Gd.The best thermometric properties in a wide temperature range among the studied systems are demonstrated by(Sm_(0.2)Dy_(0.15)Gd_(0.65))_2(tph)3(H_2 O)_4.The sensitivity reaches 0.5%/K in visible range and 1.2%/K in NIR range at low temperatures and 0.5%/K and 0.8%/K in physiological range.  相似文献   

12.
A novel polystyrene-poly(hydroxamic acid)interpenetrating network resin(PS-PHA IPNs)was successfully synthesized by suspension polymerization and interpenetrating network technology.The effects of various experimental parameters,including pH,contact time and initial concentrations of rare earth ions on the adsorption capacity were discussed in detail.Under the condition of pH 4.0(La3+),1.0(Ce3+)and 3.0(Y3+),respectively,PS-PHA IPNs can reach equilibrium adsorption in 6 h and get maximum adsorption capacities(1.08,1.43 and 1.36 mmol/g).The adsorption process of PS-PHA IPNs for La(Ⅲ),Ce(Ⅲ)and Y(Ⅲ)ions can be described by liquid membrane diffusion,particle diffusion and chemical reaction.The adsorption process is a spontaneous and endothermic process and can be better simulated by Langmuir adsorption isotherm.The studies of SEM-EDS indicate that rare earth ions are adsorbed on the surface of PS-PHA IPNs.Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis further prove that rare earth ions are chemisorbed on the surface of PS-PHA IPNs.These results reveal that the as-prepared PS-PHA IPNs is a promising adsorbent for adsorption of rare earth ions due to their higher adsorption capacity than other adsorbents.  相似文献   

13.
The MnXOx catalysts(i.e.,MnSmOx,MnNdOx,MnCeOx) were prepared by reverse co-precipitation method and used for NH3-SCR reaction.It is found that MnCeOx catalyst presents the best low tempe rature catalytic activity(higher than 90% NOx conversion in the te mperature range from 125 to 225℃)and excellent H2O+SO2 resistance.In order to explore the reason for this result,the characterization of X-ray diff...  相似文献   

14.
This study systematically evaluates the recovery of rare earth elements (REEs) from aqueous solution and industrial wastewater using magnetic nanoparticles CuFe2O4. The industrially manufactured CuFe2O4 displays a nonlinear isotherm for REEs adsorption, suggesting limiting binding sites on the CuFe2O4 surface. The recovery of REEs increases significantly from 0.1% to 99.99% with increasing pH (2.29–8.15). At room temperature, the maxima recovery rates of Nd, La, and Ce are observed to be in a high capacity of 51.02, 42.02, and 40.16 mg/g, respectively. No significant attenuation of REE adsorption is observed with increasing NaCl concentration from 0.001 to 1.0 mol/L, showing high selectivity of REEs even in such high NaCl concentration matrix. In addition, desorption efficiency increases with the increasing concentration of HNO3 in the range of 0.005–0.05 mol/L. When HNO3 concentration is over 0.05 mol/L, the desorption efficiency can reach almost 100% in each batch experiment. Importantly, our results show that REEs can be sorbed and recycled from liquid crystal display (LCD) polishing wastewater, suggesting that CuFe2O4 may be a good candidate in the efficient and rapid recovery of REEs from industrial wastewater.  相似文献   

15.
Ytterbium and rare earth ions(RE=Y,Gd,La)codoped CaF2-SrF2single crystals(3 at%Yb,6 at%RE:CaF2-SrF2)were fabricated by temperature gradient technology(TGT).All the space groups remain the same Fm3m as that of Yb:CaF2-SrF2.The lattice parameter a,unit cell volume V,as well as bond length of Ca/Sr-F and F-F increase in the sequence of rare-earth ions radius Y3+3+3+.The segregation coefficients of Yb ions are 0.87 in Yb,La:CaF2-SrF2and Yb,Gd:CaF2-SrF2,which are larger than 0.85 in Yb,Y:CaF2-SrF2and 0.80 in Yb:CaF2-SrF2.Absorption spectra in the range of 200 and 400 nm were analysed with Yb2+contents.The absorption and emission cross-sections in the range of 900-1100 nm were determined together with fluorescence lifetime.The saturation pump density/Sat,minimum pump density/m in and gain cross-section were analysed.Yb,La:CaF2-SrF2has a relatively higher optical parameter(δem×t,0.52×1020cm2·ms),lower Isat(3.68 kW/cm2)and^min(0.50 kW/cm2)at 1038 nm indicating the potential application in high power laser.Low phonon energy of CaF2-SrF2is 302 cm-1which is located between those of CaF2and SrF2as measured by Raman spectra.It is believed that ytterbium and rare earth ions(RE=Y3+,Cd3+,La3+)codoped CaF2-SrF2eutectic solid-solution is promising for high-power and wavelength-tunable solid-state lasers.  相似文献   

16.
A number of studies have focused on the effects of rare earth elements (REEs) on crop plants, while little attention has been paid on how tolerant plant species respond to increasing mixed REE concentrations. In this study, ramie (Boehmeria nivea L.) was exposed to a series of REE concentrations prepared with equimolar mixtures of 16 REEs (i.e. 0, 1.6, 8, 16, 80, 160, 400, 800 μmol/L) in order to explore REE accumulation and fractionation characteristics in ramie and the responses of this plant to mixed REEs. Results show that ramie root and shoot biomasses are unaffected under lower REE concentrations (1.6–80 μmol/L), while the growth of ramie and the uptake of nutrients especially Ca and Mn are largely inhibited under higher REE concentrations (160–800 μmol/L). The P and Mo concentrations in the roots increase with the increasing REE concentrations in the solution, suggestive of an involvement of P and Mo in dealing with the high concentrations of REEs in this plant. The preferential uptake of Ce and heavy REEs (HREEs) and the preferential transport of HREEs within the plant lead to a positive Ce anomaly and a HREE enrichment in ramie leaves. Our study suggests that ramie could be a good candidate for the phytoremediation of heavily REE-contaminated soils (e.g., REE mine tailings in southern China). Our results also shed light on points of taking into account phytoremediation management strategies of REE-contaminated soils (e.g., P and Mo fertilization).  相似文献   

17.
In this research, un-doped CeO2 and Ce0.85La0.10M0.05O2 (M: Sm, Er, Y) compounds were synthesized by hydrothermal method and the multi-functional properties are reported. Oxygen defects were created with the additives of rare earth ions. The electrical and luminescence behaviors of the synthesized compounds were investigated in accord with the types of additives. The synthesized products were characterized by X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) measurement, UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopic (EIS). All synthesized compounds are found to be nano-structured and have cubic phase. The total conductivity of all samples was calculated. Hence, the total conductivity of un-doped CeO2, Ce0.85La0.10Y0.05O2, Ce0.85La0.10Er0.05O2 and Ce0.85La0.10Sm0.05O2 is found to be 2.07 × 10?10, 5.70 × 10?4, 1.0 × 10?3 and 0.0747 S/cm, respectively. Also, bandgap energy (Eg) of these samples calculated from UV visible absorption spectra is discussed, and the optical results show variation between 3.2 and 2.15 eV. Additionally, the luminescence properties of the compounds were investigated and different emissions occur depending on the additive type. Accordingly, photoluminescent emission spectra of Ce0.85La0.10Y0.05O2, Ce0.85La0.10Er0.05O2 and Ce0.85La0.10Sm0.05O2 phosphors indicate that these phosphors have red, green and orange-red colors, respectively.  相似文献   

18.
The occurrence modes of rare earth elements(lanthanide and yttrium,abbreviated as REY) in coal are impo rtant both for coal geochemistry studies and the application potential of REY as a by-product of coalbased resources.In this study,the adsorption behaviors of REY on organic matter in coal were investigated by leaching tests using REY solution and ultra-low ash coal samples.On this basis,the adsorption mechanism of REY on organic matter in coal was also studied by molecular simulation calculat...  相似文献   

19.
The nonrelativistic DV-X_α-SCC method was used to study the electronic structure and chemi-cal bonding of tetranuclear neodymium complex Nd_4O(OR)_4(NR′_2)_6,with emphasis on the bonding charac-ter of the central μ_4-O atom and the four Nd atoms.The results of calculation show that the μ_4-O atom usesits sp~3 valence orbitals to contribute four O-Nd bonding MOs with character of multicenter bond apparent-ly.The Mulliken population analysis shows that the overlap population between Nd atoms is almost equal tozero,therefore there is no direct metal-metal bond between Nd atoms.The coordination number of Nd in thecomplex is discussed briefly.  相似文献   

20.
This study proposes an advanced leaching method using organic acids to recover rare earth elements (REEs) from NdFeB permanent magnets from end-of-life computers hard disk drives (HDDs). The end-of-life HDDs were first dismantled in order to recover NdFeB magnets, which were then thermally demagnetized at 350 °C during 30 min before crushing in a ball mill under inert atmosphere. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses performed on the NdFeB magnets show the heterogeneous structure containing the major matric phase Nd2Fe14B and the REEs-rich phase containing Nd and Pr oxides. Additionally, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS) analyses on the ground NdFeB magnet show that grinding NdFeB magnets under inert atmosphere helps to minimize its oxidation. Chemical analysis shows that the composition of the ground sample is Nd: 22.8 wt%, Pr: 3.3 wt%, Dy: 1.2 wt%, Fe: 62.6 wt%, Co: 1.5 wt%, B: 0.9 wt%, Ni: 0.6 wt%. Diagrams of speciation and equilibrium phases (Eh vs. pH) were calculated to determine the predominance of the formed species in the REEsorganic acids systems. The influence of the organic acid type (acetic acid, formic acid, citric acid and tartaric acid), the acid concentration (10 vol%, up to saturation), and the solid/liquid (S/L) ratio (0.5%–10%) on NdFeB magnets leaching was investigated employing an optimal experimental design conceived by the statistical software JMP. Acetic acid (CH₃COOH) shows the highest leaching performance of REEs, allowing leaching yields over 90% for Nd, Dy and Pr in the acid concentration range of 1.6–10 mol/L and the S/L ratio range of 0.5%–5% at a temperature of 60 °C. The results presented in this investigation suggest that REEs can be recovered from magnets of end-of-life HDDs using an eco-friendly method assisted by organic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号