首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic hierarchical mobility management strategy for mobile IP networks   总被引:14,自引:0,他引:14  
One of the major challenges for the wireless network design is the efficient mobility management, which can be addressed globally (macromobility) and locally (micromobility). Mobile Internet protocol (IP) is a commonly accepted standard to address global mobility of mobile hosts (MHs). It requires the MHs to register with the home agents (HAs) whenever their care-of addresses change. However, such registrations may cause excessive signaling traffic and long service delay. To solve this problem, the hierarchical mobile IP (HMIP) protocol was proposed to employ the hierarchy of foreign agents (FAs) and the gateway FAs (GFAs) to localize registration operations. However, the system performance is critically affected by the selection of GFAs and their reliability. In this paper, we introduce a novel dynamic hierarchical mobility management strategy for mobile IP networks, in which different hierarchies are dynamically set up for different users and the signaling burden is evenly distributed among the network. To justify the effectiveness of our proposed scheme, we develop an analytical model to evaluate the signaling cost. Our performance analysis shows that the proposed dynamic hierarchical mobility management strategy can significantly reduce the system signaling cost under various scenarios and the system robustness is greatly enhanced. Our analysis also shows that the new scheme can outperform the Internet Engineering Task Force mobile IP hierarchical registration scheme in terms of the overall signaling cost. The more important contribution is the novel analytical approach in evaluating the performance of mobile IP networks.  相似文献   

2.
在移动IP网络中,层次移动IP协议可降低移动IP位置管理的信令消耗。该文研究支持寻呼的HMIPv6,提出了时延限制下的多步寻呼策略以及基于遗传算法的多步寻呼方案——根据移动节点的位置概率分布,采用遗传算法对寻呼区域内的所有子网进行分组,每步寻呼一个组,使平均寻呼信令开销达到或接近最优。此外,对HMIPv6、单步寻呼的HMIPv6以及基于遗传算法的多步HMIPv6寻呼方案的信令开销进行了比较分析,得出寻呼节省信令开销的必要条件。最后,给出一组数值结果以说明所提出的寻呼策略的有效性。  相似文献   

3.
在基于MPLS的层次化移动IP网络中支持DiffServ的研究   总被引:2,自引:0,他引:2  
陈伟  邓银波  陈前斌  李云  隆克平 《通信学报》2004,25(12):102-112
MPLS支持DiffServ、流量工程,能为网络提供较好的QoS保证,而移动IP(MIP)能为移动设备提供较好的移动性支持。文章探讨了在无线接入网中MPLS和MIP结合实现DiffServ的方案,并给出了一种在基于MPLS的层次化MIP网络结构中支持DiffServ的体系结构,设计了其节点功能模型和关键协议。方案中利用了层次化结构的区域注册和重路由机制,减少了切换时延和网络的信令负荷。  相似文献   

4.
The growing demand for seamless invocation of different multimedia services from handheld devices anytime anywhere is the main driving force for drawing attention in the area of mobility management. Although Session Initiation Protocol (SIP) based mobility solution is very efficient for real-time services, Mobile IP is required to handle mobility of the mobile node (MN) at the network layer. We have extensively studied and explored some existing mobility management methods integrating the functionalities of Mobile IP and SIP in this paper. These schemes require support of IP encapsulation at the protocol stack of correspondent node (CN). To address the above problem, we have proposed in this paper, certain modification at the IP layer of Base Station (BS) that also reduces the bandwidth consumption. Moreover, service provisioning in a continuous way in public places like airport, university campus etc., requires to integrate some micro-mobility protocol with the existing mobility management methods to reduce the handoff disruption time in case of intradomain handoff. Thus, in this paper, we have proposed two new hybrid mobility management schemes that integrate two existing Mobile IP and SIP-based schemes where the proposed modification in the IP layer of BS is incorporated separately with the micro-mobility protocol Hierarchical Mobile IP (HMIP). The numerical results show that the integration of HMIP into the existing methods reduces both the signaling cost and the delay, mainly the active handoff disruption time. Simulation results on NS-2 demonstrate the performance improvement of the proposed mobility management schemes over the existing methods in terms of handoff delay.  相似文献   

5.
With developments in voice over IP (VoIP), IP-based wireless data networks and their application services have received increased attention. While multimedia applications of mobile nodes are served by Session Initiation Protocol (SIP) as a signaling protocol, the mobility of mobile nodes may be supported via Mobile IP protocol. For a mobile node that uses both Mobile IP and SIP, there is a severe redundant registration overhead because the mobile node has to make location registration separately to a home agent for Mobile IP and to a home registrar for SIP, respectively. Therefore, we propose two new schemes that integrate mobility management functionality in Mobile IP and SIP. We show performance comparisons among the previous method, which makes separate registration for Mobile IP and SIP without integration, and our two integrated methods. Numerical results show that the proposed methods efficiently reduce the amount of signaling messages and delay time related to the idle handoff and the active handoff.  相似文献   

6.
Mobility management for VoIP service: Mobile IP vs. SIP   总被引:4,自引:0,他引:4  
Wireless Internet access has gained significant attention as wireless/mobile communications and networking become widespread. The voice over IP service is likely to play a key role in the convergence of IP-based Internet and mobile cellular networks. We explore different mobility management schemes from the perspective of VoIP services, with a focus on Mobile IP and session initiation protocol. After illustrating the signaling message flows in these two protocols for diverse cases of mobility management, we propose a shadow registration concept to reduce the interdomain handoff (macro-mobility) delay in the VoIP service in mobile environments. We also analytically compute and compare the delay and disruption time for exchanging signaling messages associated with the Mobile IP and SIP-based solutions.  相似文献   

7.
In the traditional Transmission Control Protocol/Internet Protocol (TCP/IP) stack, IP address represents not only the identifier but also the location of a node so that it can not provide global roaming seamless. To address this problem, MIP (Mobile IP) uses dynamical care-of-address to indicate the location of a mobile node (MN) and stable home address to indicate its identifier. However, such a separation of MIP can not support routing scalability, location privacy, and manageability. In this paper, we propose an identifier/locator split architecture which contains an overlay mapping system to store identifier-to-locator mappings and manage mobile nodes?? behavior. In addition, we design a novel mobility management scheme based on the identifier/locator split architecture (MMILS) which can address the above issues of MIP. To reduce the amount of signaling and enhance the performance, we distinguish micro-mobility and macro-mobility by introducing an Agent Tunnel Router (ATR). For micro-mobility, the ATR keeps the MN??s identifier-to-locator mapping invariable, so it avoids the mapping update in the mapping system and the Tunnel Route (TR) of each correspondent node. For macro-mobility, to support fast update and handover, we design a united mapping table in the ATR. And then, we estimate the number of entries and the required storage space to validate it feasible. To evaluate the efficiency of MMILS, we analyze the signaling cost by establishing an analytical model and implement it in our test-bed. The results demonstrate that the proposed scheme can effectively reduce signaling traffic and has a low handover delay compared to MIP and HMIP (Hierarchical Mobile IP).  相似文献   

8.
This paper introduces a dynamic hierarchical database architecture for location management in personal communications service (PCS) networks. The proposed scheme allows the dynamic adjustments of user location information distribution based on the mobility and calling patterns of the mobile terminals (MTs). A unique distribution strategy is determined for each MT, and location pointers are set up at selected remote locations which indicate the current location of the MTs. This method effectively reduces the signaling and database access overhead for location registration and call delivery. Besides, the required processing is handled by a distributed network of directory registers and centralized coordination is not necessary. The functions of the other network elements, such as the home location register (HLR) and the visitor location registers (VLRs), remain primarily unchanged. This greatly facilitates the deployment of this scheme in current PCS networks  相似文献   

9.
Zohar Naor 《Ad hoc Networks》2013,11(7):2136-2145
A layer-3 mobility management scheme for an all-IP Wireless Access Network (WAN), and in particular for vehicular networks, is developed in this paper. The proposed method enables fast and reliable handoff. This feature is extremely important for high speed vehicular networks. Since vehicles are characterized by likely-predictable path, as well as very high speed, handoff events can and should be predicted in order to achieve fast and reliable handoff. As it is shown in this study, the proposed scheme can significantly reduce the packet loss ratio caused by frequent handoff events experienced by high speed vehicles. This scheme is topology-independent in the sense that it does not assume any network topology. The key idea is to use a topology-learning algorithm that enables to perform localized mobility management, by efficiently re-selecting a Mobility Anchor Point (MAP) node. The goal of the proposed scheme is to maintain a continues connection subject to user-dependent delay constraints, while minimizing the signaling cost and packet loss ratio associated with handoff events. This scheme is consistent with the existing mobility management schemes currently used in Mobile IP (MIP) and cellular networks, and it fits into the Hierarchical Mobile IPv6 (HMIPv6) scheme defined in Mobile IPv6 (MIPv6) for integrating mobile terminals with the Internet wired backbone.  相似文献   

10.
This letter proposes a novel deregistration strategy-group deregistration-for PCS networks. In the proposed strategy, instead of deregistering a mobile terminal (MT) right after the MT leaves its registration area (RA), the home location register (HLR) keeps the MT's identification in a list associated with the RA. When the next registration from the RA arrives, the HLR sends the MT identification list to the RA along with the registration acknowledgment message. The RA then deregisters these MTs. Compared to the conventional deregistration strategy, the proposed strategy greatly reduces both the signaling traffic and the database load  相似文献   

11.
In mobile networks, the location of a mobile user needs to be traced for successful and efficient call delivery. In existing cellular networks, as a mobile user changes his/her location area (LA), a location registration request is sent to the home location register (HLR) to update the user profile to point to the new LA. With a large number of mobile subscribers, this conventional registration strategy will incur a high volume of signaling traffic. We propose a new location registration strategy, called Group Registration (GR), which efficiently reduces the location registration cost by reporting location changes to the HLR for multiple mobile terminals (MTs) in a single location update request message. Specifically, the IDs of the MTs newly moving into an LA are buffered and sent to the HLR for location update in the route response message of the next incoming call to any MT in the LA. An analytic model is developed and numerical results are presented. It is shown that the proposed GR strategy can achieve significant cost reductions compared to the conventional strategy and the local anchor strategy over a wide range of system parameters. Moreover, the GR strategy results in a much smaller call delivery latency than the local anchor strategy.  相似文献   

12.
Broadband wireless technologies will soon become an integral part of daily life. In this paper we present the design rationale of a context-aware mobility management architecture for seamless handover in heterogeneous networks. Our proposal is a new cross-layer and interactive approach to seamless handover of users and their services. We present a simple though effective analytical model in typical deployment scenarios in heterogeneous networks with the use of the IEEE Media Independent Handover services. Such analytical model is used to evaluate the resulting handover delay when deploying common mobility protocols in our architecture, such as Mobile IP, Hierarchical MIP, and Proxy MIP.  相似文献   

13.
Mobile IP is a simple and scalable global mobility solution. However, it may cause excessive signaling traffic and long signaling delay. Mobile IP regional registration is proposed to reduce the number of location updates to the home network and to reduce the signaling delay. This paper introduces a novel distributed and dynamic regional location management for Mobile IP where the signaling burden is evenly distributed and the regional network boundary is dynamically adjusted according to the up-to-date mobility and traffic load for each terminal. In our distributed system, each user has its own optimized system configuration which results in the minimal signaling traffic. In order to determine the signaling cost function, a new discrete analytical model is developed which captures the mobility and packet arrival pattern of a mobile terminal. This model does not impose any restrictions on the shape and the geographic location of subnets in the Internet. Given the average total location update and packet delivery cost, an iterative algorithm is then used to determine the optimal regional network size. Analytical results show that our distributed dynamic scheme outperforms the IETF Mobile IP regional registration scheme for various scenarios in terms of reducing the overall signaling cost.  相似文献   

14.
The original Mobile IP (MIP) protocol does not perform Route Optimisation but uses Home Agents to forward traffic. Thus, it does not have problems with simultaneous mobility, that is, the special case when both end hosts are mobile and move at about the same time. However, MIP for IPv6 (MIPv6) uses binding updates that are sent directly to a correspondent node. Session Initiation Protocol based mobility management (SIPMM) and MIP with location registers (MIP‐LR) also use direct binding updates between a mobile host and a correspondent node. Thus, MIPv6, MIP‐LR and SIPMM are vulnerable to the simultaneous mobility problem. In this paper, we analyse the simultaneous mobility problem and solution mechanisms, and propose new ways for MIPv6, MIP‐LR and SIPMM to handle simultaneous mobility. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present a mobility management scheme for real-time multimedia sessions over heterogeneous wireless networks. Most approaches in the current literature use Mobile IP (MIP) or Session Initiation Protocol (SIP) to maintain real-time sessions during mobility. In this paper, we analyze MIP and SIP in terms of the mobility rate, packet loss and packet overheads in the user plane and propose a mechanism by which the network can choose the optimum protocol for mobility management. We perform the analysis for constant bit rate (CBR) as well as for variable bit rate (VBR) traffic. We show that for CBR traffic, the proposed mechanism leads to 12–35% improvement in the system capacity, while for VBR traffic, capacity improvements ranging from about 35–50% can be obtained. Our proposed approach and the analysis are applicable to handovers between different IP domains both in homogeneous as well as in heterogeneous wireless networks.  相似文献   

16.
In Proxy Mobile IP (PMIPv6) networks, proxy-registrations are performed even for idle MNs, resulting in unnecessary signaling traffic. Although there have been many IP paging techniques aimed at reducing the unnecessary location update, they focus only on Mobile IP (MIP) since they had been developed before PMIPv6 was proposed. Thus, adopting existing IP paging support is not sufficient to support mobility in PMIPv6 networks. For more efficient support, we propose a dynamic multi-step paging scheme that pages an MN in multiple incremental steps instead of flooding paging messages to a whole paging area to significantly reduce the signaling traffic caused by the proxy location updates in the PMIPv6 networks. In addition, to improve the paging delay performance that may be deteriorated by the multi-step paging, the proposed scheme configures paging area dynamically to raise the efficiency of locating MNs. The size of a paging area is designed to be determined based on the speed of an MN. We also develop a thorough analytical model for evaluating the performance of the proposed scheme compared with a static paging scheme in terms of the signaling cost and the paging delay. Thorough analysis and simulation demonstrate that in the PMIPv6 network, our paging scheme can significantly reduce the signaling cost for IP paging, achieving a shorter paging delay, compared to that of a paging scheme with a fixed paging area.  相似文献   

17.
As IP has been extended from core networks to access networks, a mobile network can be considered as an overlay of a traditional cellular network and an IP network. SMS-MIPv6 attempts to integrate mobility management of these two kinds of networks. The basic idea behind SMS-MIPv6 is to exploit existing mobility management in the cellular network (i.e. in the form of well-defined short messages) to locate a Mobile Terminal (MT) in the IPv6 network. We should emphasize that the motivation of SMS-MIPv6 is not to replace or optimize existing mature mobility management schemes. On the contrary, as an entirely end-to-end mechanism for IPv6 mobility management, it provides an alternative mechanism for free peer-to-peer applications such as Voice over IP (VoIP) without support from mobile network operators. We describe the implementation of SMS-MIPv6 in detail and analyze its performance. The evaluation results show that SMS-MIPv6 achieves acceptable performance so that it can be deployed in most current mobile networks. It performs best in terms of signaling cost, data traffic overhead compared with Mobile IPv6 (MIPv6) and Proxy MIPv6 (PMIPv6). Moreover, SMS-MIPv6 can reduce the handover latency significantly, although it is considered as a mobility management scheme for global mobility. However, it increases the session initialization latency due to hybrid binding through the cellular network.  相似文献   

18.
1IntroductionMobile users want to enjoy multi media and other real-ti me services in the Internet . Thus the Internet Engi-neering Task Force (IETF) has introduced the MobileIPv4[1]and Mobile IPv6[2]to interoperate seamlesslywith protocols that provide real-ti me services in the In-ternet. Multi-Protocol Label Switching ( MPLS) is afast label-based switching technology that integrates thelabel-swapping paradigm with network-layer routing[3].Resource Reservation Protocol ( RSVP)[4 ~…  相似文献   

19.
Adaptive Route Optimization in Hierarchical Mobile IPv6 Networks   总被引:1,自引:0,他引:1  
By introducing a mobility anchor point (MAP), Hierarchical Mobile IPv6 (HMIP6) reduces the signaling overhead and handoff latency associated with Mobile IPv6. However, if a mobile node (MN)'s session activity is high and its mobility is relatively low, HMIPv6 may degrade end-to-end data throughput due to the additional packet tunneling at the MAP. In this paper, we propose an adaptive route optimization (ARO) scheme to improve the throughput performance in HMIPv6 networks. Depending on the measured session-to-mobility ratio (SMR), ARO chooses one of the two different route optimization algorithms adaptively. Specifically, an MN informs a correspondent node (CN) of its on-link care-of address (LCoA) if the CN's SMR is greater than a predefined threshold. If the SMR is equal to or lower than the threshold, the CN is informed with the MN's regional CoA (RCoA). We analyze the performance of ARO in terms of balancing the signaling overhead reduction and the data throughput improvement. We also derive the optimal SMR threshold explicitly to achieve such a balance. Analytical and simulation results demonstrate that ARO is a viable scheme for deployment in HMIPv6 networks.  相似文献   

20.
Effect of personal mobility management in mobile communication networks   总被引:1,自引:0,他引:1  
Personal mobility (PM) is one of the key issues in realizing a personal communications service (PCS) in emerging third-generation mobile communication networks such as IMT-2000. It can be realized through the universal personal telecommunication (UPT) service. Two PM management schemes are proposed to manage PM information related to UPT users for incoming call (incall) registration/deregistration, incall registration reset by a mobile terminal (MT) owner, and incall delivery to UPT users in mobile communication networks based on the location information managed by the user's home network. The relative cost, i.e., the ratio of cost per unit time for supporting both terminal mobility (TM) and PM management to that of TM management, is derived, and the effect of PM management is analyzed from the aspects of update or query cost, signaling delivery cost, and processing cost. These results can be utilized in the implementation of PM management in IMT-2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号