首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
对含碳量为0.54%的高速车轮钢热处理工艺进行实验研究,得到不同晶粒尺寸和珠光体片间距的显微组织,在室温下对具有不同显微组织的紧凑拉伸(CT)试样进行断裂韧性测试。结果表明,车轮钢的平均晶粒尺寸随奥氏体化温度升高而增加;珠光体片间距随冷却速率增加而减小。车轮钢室温下的断裂模式为解理断裂,断裂韧性主要取决于晶粒尺寸的大小,晶粒尺寸越小,断裂韧性越高。珠光体片间距对断裂韧性有一定影响,粗大的珠光体片间距会降低断裂韧性,并且当晶粒尺寸较小时,珠光体片间距的影响更明显。因此,实际工程中为提高车轮钢断裂韧性,合理的奥氏体化温度是关键,同时需适当增加车轮钢奥氏体化后的冷却速率。  相似文献   

2.
利用光学金相、扫描电子显微镜(SEM)和显微硬度等测试方法,研究了控制冷却过程中不同冷却工艺对弹簧钢55SiCrA的组织形态和性能影响.结果表明:随着冷却速度的增加,55SiCrA钢的显微硬度增大,珠光体平均片层间距减小;为了获得良好的组织性能,珠光体相变区冷速优选控制在0.8℃/s以下;在670℃进行恒温转变时,55SiCrA钢的显微硬度和珠光体片层间距较好.  相似文献   

3.
以轴承钢GCr15为研究对象,研究了热变形及冷却过程中工艺参数对珠光体组织转变的影响.研究发现:高温变形促进了轴承钢在连续冷却过程中珠光体的转变,随变形量增加,珠光体的开始析出温度升高,珠光体球团直径和片层间距减小;随变形温度降低,珠光体球团直径减小,而珠光体片层间距呈增大趋势;随热变形后连续冷却速度增加,珠光体开始析出温度降低,珠光体球团直径和片层间距减小,冷却速度增大到6℃/s时有退化珠光体生成.  相似文献   

4.
利用热轧试验研究了不同冷却速率对LY225低屈服点钢显微组织、拉伸性能、冲击性能和疲劳性能的影响。结果表明,慢冷却速率(1℃/s)工艺所得组织粗大,珠光体片层间距较大,晶界游离渗碳体含量较高且沿晶界连续分布,低温韧性和疲劳性能均较差;中等冷却速率(10℃/s)和快冷却速率(20℃/s)工艺所得组织较慢冷却速率工艺所得组织明显细化,珠光体片层间距减小,晶界游离渗碳体含量减少且分布离散,强度、低温韧性和疲劳性能均得到较大提升;快冷却速率(20℃/s)较中等冷却速率(10℃/s)所得组织更加细化,但塑性有所降低,疲劳寿命也相应缩短。  相似文献   

5.
首先对某中碳钢进行不同工艺的热处理,获得了不同的原奥氏体晶粒尺寸。利用光学显微镜、扫描电镜及拉伸性能测试等研究了原奥氏体晶粒尺寸及冷速对试验钢铁素体-珠光体组织及拉伸性能的影响,并研究了试验钢的组织与性能之间的关系。结果表明:冷速对试验钢铁素体-珠光体组织的影响远大于原奥氏体晶粒尺寸。随冷却速率增加,先共析铁素体形貌由等轴状向不闭合网状过渡,先共析铁素体含量和尺寸分别由16.3 vol%、16.4μm降低至1.0 vol%、4.1μm,珠光体含量由83.7 vol%逐渐增加至99.0 vol%,珠光体平均片层间距由419 nm逐渐降低至174 nm。不同铁素体-珠光体组织试验钢的拉伸强度与布氏硬度满足线性拟合关系。试验钢抗拉强度测试值与考虑到退化珠光体存在的某数学模型符合较好。因先共析铁素体含量(形貌)、组织细化、珠光体含量及片层间距等因素的共同影响,试验钢断后伸长率与断面收缩率的变化随冷速的变化并不一致。  相似文献   

6.
本文论述了影响热处理钢轨性能的组织参数——奥氏体晶粒尺寸、珠光体片间距、渗碳体片厚度等。指出奥氏体晶粒尺寸主要受加热温度(考虑到电感应加热速度快,保温停留时间短)的控制,而珠光体片间距和渗碳体片厚度主要取决于过冷奥氏体的转变温度和冷却速度,当然也受合金元素的加入及其含量影响。同时指出,珠光体钢的强度主要受珠光体的片间距的控制,而钢的韧性则主要取决于奥氏体晶粒尺寸的大小。珠光体片间距越细则强度越高,而奥氏体晶粒尺寸越小则钢的韧性越高,且钢的脆性转变温度越低。 钢轨热处理必须选择最佳工艺参数,细化轨钢的组织参数,达到强韧化目的。  相似文献   

7.
使用高温激光共聚焦显微镜(CSLM)对LX72和LX82帘线钢900℃加热后在不同冷却速度下的组织转变进行动态原位观察,并用扫描电镜和显微硬度计分别观察和测试不同冷速冷却后的样品的珠光体片层间距和显微硬度值。结果表明:随着冷却速度的增加,帘线钢的相变温度逐渐降低,珠光体片层间距减小,同时硬度增大; LX72帘线钢的相变温度从644℃降低到533℃,相应的珠光体片间距从0. 33μm降低到0. 22μm,维氏硬度从210. 33 HV0. 1增大到342. 33 HV0. 1;而LX82帘线钢的相变温度从629℃降低到546℃,珠光体片层间距从0. 29μm降低到0. 18μm,维氏硬度从219. 33 HV0. 1增大到348. 33 HV0. 1。另外还发现,LX82帘线钢在升温至900℃时,温度出现缓冲;升温至920℃左右则出现大量黑斑,待温度恢复至900℃时,黑斑消失。  相似文献   

8.
采用盐浴等温冷却和风机连续冷却,SWRS82B钢热轧盘条能获得珠光体团尺寸7.58 μm、片层间距201 nm的均匀细小索氏体组织;随着珠光体片层间距的增大,盘条抗拉强度Rm、伸长率A等力学性能指标降低;细小的珠光体片层间距使盘条具有更好的综合力学性能,有利于提高钢丝拉拔成材率和获得高性能钢丝绳.  相似文献   

9.
本文在研究了珠光体层片的取向分布和考虑到层片间距本身的统计分布的基础上,推导了珠光体层片的真实间距和表观间距的关系式,得到一种测定钢中珠光体组织的真实平均层片间距的实用方法。将此法应用于经不同热处理的车轮,测量结果表明机械性能较高的车轮,其珠光体层片间距较小。  相似文献   

10.
本文论述了影响热处理钢轨性能的组织参数--奥氏体晶粒尺寸,珠光体片间距、渗碳体片厚度等。指出奥氏体晶粒尺寸主要受加热温度(考虑到电感应加热速度快,保温停留时间短)的控制,而珠江体片间距和渗碳体片厚度主要取说不过去这冷奥氏体的转变温度和冷却速度,当然受合金元素的加入及其含量影响。同时指出,珠光体钢的强度主要受珠光体的片间距的控制,而钢的韧性则主要取决于奥氏体晶粒尺寸的大小。珠光体片间距越细则强度越高  相似文献   

11.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

12.
利用膨胀法在Gleeble-3500热模拟试验机上测定了HRB400E抗震螺纹钢的静态连续冷却转变(CCT)曲线,采用光学显微镜OM、扫描电镜SEM和显微维氏硬度仪观察和测定了不同冷却速度下钢的显微组织和硬度,分析了冷却速度对该钢相变组织与性能的影响。结果表明,当冷速在3 ℃/s以下时,试验钢中组织为铁素体和珠光体,随着冷速的提高,试验钢中珠光体含量逐渐提高,片层间距不断减小;当冷速为4~10 ℃/s时,试验钢中开始出现贝氏体组织;当冷速>10 ℃/s时,试验钢开始发生马氏体相变;并且随着冷速的提高,试验钢的硬度逐渐提高。冷却速度为2~3 ℃/s范围内,试验钢中珠光体含量、片层间距和力学性能均满足GB/T 1499.2—2018中规定,其结果与现场生产性能检验结果相符。在冷速为3 ℃/s生产的ϕ8 mm盘螺成品试样的珠光体含量和片层间距分别为47%和0.184 μm,下屈服强度ReL、抗拉强度Rm、强屈比Rm/ReL、屈标比ReL/RseL、断后伸长率A、最大力总伸长率Agt分别为440 MPa、569 MPa、1.29、1.10、27.2%和17.8%。  相似文献   

13.
采用光学显微镜、扫描电镜及力学性能实验等研究了控轧控冷工艺对X70级管线钢的组织与力学性能的影响。结果表明:不同终轧温度下X70管线钢的显微组织主要由多边形铁素体、贝氏体和少量的珠光体组成,且随着终轧温度的升高,抗拉强度与屈服强度降低,硬度下降,冲击韧性提高,但屈强比变化不大,并且落锤性能较差;随着终轧温度的升高,晶粒尺寸逐渐增大,铁素体体积含量增多。在不同的终冷温度下,X70管线钢的显微组织主要由多边形铁素体和贝氏体组成,并且随着终冷温度的升高,抗拉强度大幅度降低,屈服强度则呈M形波动,硬度呈线性降低,冲击吸收能量大幅度升高且落锤性能较好,屈强比缓慢升高;随着终冷温度的升高,晶粒度等级基本保持稳定,铁素体含量呈线性增加。该大变形管线钢最优的轧制工艺为控制终轧温度为840℃,终冷温度为450℃。  相似文献   

14.
通过显微硬度仪、冲击试验机、万能试验机和扫描电镜等研究了不同热处理工艺下某过共析轨钢组织和性能的变化规律。结果表明:热处理工艺对该轨钢的组织和力学性能较轧制态和厂方热处理态均有所优化和提高,影响因素主要为冷却速率和等温时间。随着冷却速率的提升和等温时间的减少,基体中渗碳体析出增多,珠光体尺寸减小,大片层珠光体逐渐消失;此外,试验钢的硬度、冲击吸收能量和抗拉强度均随冷速的增大呈现先增加后降低的“折线形”变化趋势,拉伸断口粗糙度增加,断裂类型从解理断裂过渡为准解理断裂。而冲击吸收能量则随着等温时间增加而增加。最佳热处理工艺为:等温温度630 ℃,等温时间30 s,冷却速率8 ℃/s,对应的最优力学性能表现为硬度402 HBW、冲击吸收能量(KV2)2.9 J、抗拉强度1312 MPa、伸长率12.24%和断面收缩率23.96%。  相似文献   

15.
对120 mm厚的F460钢调质厚板采用相同的淬火回火温度,不同的淬火冷却速度处理,之后对钢板进行组织与性能对比,寻找该钢种的最佳热处理工艺。采用2 ℃/s冷速进行冷却的钢板,回火后强度最高,但是冲击性能不佳;适当降低淬火冷却速度后,钢板回火后强度有一定下降,但是冲击性能得到明显提升;继续降低淬火冷却速度,钢板回火后强度进一步下降,但是冲击性能提升有限。经组织分析,2 ℃/s冷速进行冷却淬火时,钢板回火后的组织为铁素体+贝氏体组织,组织中主要是贝氏体;冷却速度降低以后,钢板回火后组织为铁素体+退化珠光体组织,铁素体含量的增加,有利于钢板韧性的提升,残留奥氏体回火后形成的珠光体组织比较细小,能有效保证钢板的强度。通过对钢板的连续冷却转变曲线进行分析,钢板在冷却过程中先开始进行铁素体相变,溶质元素向奥氏体迁移。在钢板冷速较快时,铁素体中的碳化物迁移较少,奥氏体低温时转变成马氏体或者贝氏体;在钢板冷速较慢时,碳化物迁移到奥氏体内,提高奥氏体稳定性并保留到室温,形成残留奥氏体。残留奥氏体在后续的高温回火过程中,转变成珠光体。块状转变形成的铁素体组织与回火过程中形成的细小珠光体有利于钢板的强韧性匹配。  相似文献   

16.
对不同冷却速率下控轧控冷态E36船用钢板的组织性能进行了研究。结果表明:在10~60 ℃/s范围内,随着冷却速率的增加,钢板屈服强度和抗拉强度呈上升趋势;但当冷却速率在19.3 ℃/s时,出现了韧性恶化,然后随着冷却速率的增加,-60 ℃的冲击功升高,且钢板的伸长率并无明显恶化;冷却速率超过40 ℃/s时, 随冷却速率的增加,钢板强度增加不明显。在冷却速率为56.3 ℃/s时,钢板组织为粒状贝氏体+针状铁素体,晶粒细小,钢板综合力学性能最佳。  相似文献   

17.
使用DIL805A热膨胀仪测定了SWRCH35K钢的热膨胀曲线。采用切线法结合微观组织及硬度,绘制了试验钢的连续冷却转变(CCT)曲线,分析了冷却速率对试验钢连续冷却过程组织演变的影响。结果表明,冷速在0.1~1℃/s范围时,试验钢的组织为多边形先共析铁素体和珠光体,随着冷速增加,组织细化,珠光体含量增加,硬度为148~165 HV;冷速为3℃/s时,开始出现少量魏氏组织及贝氏体,硬度增加至189 HV;冷速为5~50℃/s时,铁素体沿晶界呈网状,针状魏氏组织增加,组织为晶界铁素体、珠光体、魏氏组织和贝氏体,其中冷速为30~50℃/s时,铁素体含量大幅减少且尺寸明显减小,硬度为225~237 HV。珠光体在不同冷速下的形态不同,冷速较小时以片层及短棒状为主,还有少量球状,随着冷速增加,短棒状珠光体占比增加,片层及球状珠光体占比减小。  相似文献   

18.
采用光学显微镜、扫描电镜、硬度计、冲击试验机、万能拉伸试验机研究了U75V重轨钢轧态及淬火冷速为3 ℃/s和5 ℃/s条件下的微观组织、力学性能及断口形貌。结果表明:随着淬火冷速的增加,U75V钢的晶粒逐渐细化,珠光体片层间距减小,其中,轧态U75V钢的晶粒和片层间距最大,而5 ℃/s淬火冷速的U75V钢晶粒和片层间距最小;随着淬火冷速的增加,U75V钢的冲击吸收能量、硬度等综合力学性能增加。其中,轧态U75V钢轨的冲击吸收能量、硬度及抗拉强度最小,而5 ℃/s淬火冷速的U75V钢冲击吸收能量、硬度最优且抗拉强度较好。  相似文献   

19.
利用膨胀法并结合金相-硬度法对研制的一种低屈强比高强耐候钢进行了奥氏体连续冷却转变(CCT)曲线测定,并对其力学性能和耐蚀性能进行了研究。结果表明:该试验钢抗拉强度达575 MPa,屈强比为0.75,冲击性能优良,耐蚀性明显优于Q345B钢;当奥氏体化后的试验钢以0.1~100 ℃/s冷却速率冷却至室温时,随冷却速率增加其显微硬度由131 HV0.5增加至218 HV0.5;其中当冷却速率小于1 ℃/s时,其组织由铁素体+珠光体构成;当冷却速率为1~20 ℃/s时,其组织由铁素体+珠光体+贝氏体构成;当冷却速率为20~100 ℃/s时,珠光体消失,其组织主要由铁素体+贝氏体构成。  相似文献   

20.
针对欧洲高速动车使用的DB920车轮进行了工艺实验和实验室实验。结果表明,DB920车轮轮辋部位组织主要为少量铁素体和细珠光体,当组织中的铁素体比例较高且呈网状分布时,在进行断裂韧性评价实验时易出现撕裂状断口,在撕裂带侧面有大量韧窝,断裂韧性值(KQ)较高;相反,当铁素体比例较低时,断面相对平整,断裂方式以沿晶断裂和解理断裂为主,断裂韧性较差。组织分析和有限元模拟分析结果表明:喷水冷却时,轮辋处的冷却速度自踏面向内不断降低,冷速越慢,相变后生成铁素体比例就越高,断裂韧性也就越好。结合连续冷却实验的结果估算,对此成分车轮钢而言,当冷速大于1℃/s时,相变后不能获得足够的铁素体以保证此区域的断裂韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号