首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims to conduct the weldability test for a high-strength structural steel,Bweldy620QL6,developed by Baosteel.This steel was subjected to welding,and the effects of two kinds of shielding gas,a binary gas of 80% Ar + 20% CO2 and ternary gas of 90% Ar + 8% CO2 + 2% O2,on the performance of the welded joints of high-strength heavy steel were compared.The results show that Bweldy620QL6 has good weldability,and the joints obtained using binary gas and ternary gas meet common requirements.  相似文献   

2.
Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.  相似文献   

3.
As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.  相似文献   

4.
Small CO2 additions of 0.092 to 10 vol pct to the Ar shielding gas dramatically change the weld shape and penetration from a shallow flat-bottomed shape, to a deep cylindrical shape, to a shallow concave-bottomed shape, and back to the shallow flat-bottomed shape again with increasing CO2 additions in gas thermal arc (GTA) welding of a SUS304 plate. Oxygen from the decomposition of CO2 transfers and becomes an active solute element in the weld pool and reverses the Marangoni convection mode. An inward Marangoni convection in the weld pool occurs when the oxygen content in the weld pool is over 80 ppm. Lower than 80 ppm, flow will change to the outward direction. An oxide layer forms on the weld pool in the welding process. The heavy oxide layer on the liquid-pool surface will inhibit the inward fluid flow under it and also affects the oxygen transfer to the liquid pool. A model is proposed to illustrate the interaction between the CO2 gas and the molten pool in the welding process.  相似文献   

5.
700MPa级Ti Nb成分体系控轧控冷高强钢以其生产成本低、高强韧性以及优良的可焊性,近年来在专用车轻量化领域得到广泛应用。本文采用80%Ar+20%CO2(体积分数)混合气体保护焊,对高Ti、Nb元素析出强化高强钢进行了焊接强度试验研究。结果表明,随着焊接热输入增大,焊接接头强度有降低趋势,焊接热影响区较母材硬度降低,存在软化行为,其软化机理表现在细晶强化、变形强化和析出强化效果的丧失。通过母材的B微合金化、控制焊接热输入等措施可有效缓解软化倾向,可为此种高强钢进一步推广应用提供技术参考。  相似文献   

6.
The influence of flux cored arc welding (FCAW) process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bowing distortion of 409M ferritic stainless steel sheets of 2 mm in thickness was discussed. The bowing distortions of the welded plates were measured using a simple device called profile tracer. An experimental regression equation was developed to predict the bowing distortion and with this equation, it is easy to select optimized process parameters to achieve minimum bowing distortion. It is revealed that the FCAW process parameters have significant influence on bead profile and the bowing distortion.  相似文献   

7.
The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.  相似文献   

8.
针对穿孔深熔氩弧焊(K-TIG)工艺焊接8 mm厚Q235低碳钢板时焊接过程不稳定、焊接工艺窗口小等突出问题,首次提出在焊接工件背部铺加保护焊剂的方法改善焊接过程。采用对接焊的方式,在不开坡口、焊接过程不添加焊丝的情况下,达到单面焊双面成形的效果。最终成功的采用430~480 A范围内的直流电流对8 mm厚的Q235低碳钢进行了焊接,将焊接电流窗口扩大到50 A同时也显著的提高了焊接过程的稳定性。同时,在扩大焊接电流窗口之后,系统研究了不同焊接电流下焊接接头的组织性能。研究结果表明:在不同焊接电流下得到的焊接接头中,组织分布以及力学性能分布呈现出相同的状态。焊缝区的组织均由铁素体+珠光体+魏氏组织组成;熔合区由魏氏组织组成;热影响区由铁素体+少量的珠光体组成;此外随着焊接电流的增加,焊接接头背部的熔宽有略微增加;在焊接接头中,熔合区处硬度值最高,其次是焊缝区,之后是热影响区,母材的硬度值最低;焊接接头最终的拉伸断裂位置是在热影响区处。   相似文献   

9.
曹朝真  郭培民  赵沛  庞建明 《钢铁》2009,44(4):11-0
 通过CH4 H2 CO H2O CO2 O2煤气体系的热力学模拟计算,对焦炉煤气自重整技术进行了研究。结果表明:高温、高CH4含量以及低压有利于焦炉煤气自重整。在配氧量14%,反应温度850~900 ℃,体系压力为0.3 MPa的条件下,对焦炉煤气进行自重整,则还原气平衡态组分中的氢气的体积分数可由60.0%提高到71.5%,CO体积分数可由8.0%提高到23.1%;气体的还原势为97.2%,还原气体总量约增加33%。  相似文献   

10.
 Cable welding wire (CWW) CO2 gas shielded welding is an innovative process arc welding with high efficiency, high quality and low consumption, in which cable wire is used as consumable electrode. CWW CO2 gas shielded welding and submerged arc welding (SAW) are used for contrast studies on processing property of high strength steel A36 used in ship structure. The results show that the shapes of weld seam, using CWW CO2 gas shielded welding and SAW, are good and no weld defect such as air hole, flaw, slag inclusion, incomplete fusion, lack of penetration and so on are found in the weld seam. Because the rotating of arc during CWW CO2 gas shielded welding process has a strong stirring effect on molten pool, the grain in the heat affected zone (HAZ) of the joints, using CWW CO2 gas shielded welding, is small. Tensile failure positions of joints by CWW CO2 gas shielded welding and SAW are all in the base metal, but tensile strength of CWW CO2 gas shielded welding joint is higher than that of SAW joint by an average of 2. 3%. The average impact energy of HAZ, using CWW CO2 gas shielded welding and SAW, is almost equal, but the average impact energy of the weld seam using CWW CO2 gas shielded welding is increased by 6%, and the average impact energy of the fusion line is increased by 7%. The 180° bending tests for the joints of CWW CO2 gas shielded welding and SAW are all qualified, and the joints hardness is all less than HV 355, but hardness of CWW CO2 gas shielded welding wire welding joint near the fusion line is obviously lower. It can be concluded that the properties of CWW CO2 gas shielded welding are better than those of the SAW joint, and CWW CO2 gas shielded welding is suitable for welding high strength steel A36 used in ship structure.  相似文献   

11.
在不同焊接参数下分别通过Φ3 mm E4303碳钢焊条(/%:≤0.12C、≤0.25Si、0.30~0.60Mn)和Φ1mm H10MnSi焊丝(/%:0.14C、0.65~0.95Si、0.80~1.10Mn)对3.8 mm DP590钢薄板(/%:0.07C、0.45Si、1.61 Mn)进行手工电弧焊接和CO2气体保护焊接,并利用ZEISS光学显微镜、LEICA显微硬度计分别对焊接接头的组织和显微硬度进行了观察和分析。结果表明,在焊缝区手工电弧焊焊缝组织为沿柱状晶分布的先共析铁素体和珠光体,CO2气体保护焊为针状铁素体和少量贝氏体,在粗晶区手工电弧焊为贝氏体和先共析铁素体,CO2气体保护焊为板条马氏体和贝氏体,且其粗晶区晶粒尺寸大于手工电弧焊;采用CO2气体保护焊,选择较大的热输入,焊缝和粗晶区的魏氏组织消失;显微硬度最大值均出现在粗晶区,手工电弧焊的热影响区宽度小于CO2气体保护焊。  相似文献   

12.
In this study,spectroscopic measurements of CO2- Ar arc plasma flow are conducted using a hollow electrode arc heated wind tunnel. In CO2- Ar plasma,radiation of C2 Swan band system is predominant. Other molecular and atomic spectra are not observed except Cu spectra which are produced due to the electrode melting. Background continuum radiation is observed and overlapped with C2 Swan band system. Temperature evaluation of CO2- Ar arc plasma flow is conducted by the area intensity method and temperature distribution is obtained along the stagnation streamline around a disk model. It is found that the vibrational temperature is much higher than the rotational temperature in the free stream region due to the vibrational nonequilibrium process. In the shock layer,the rotational temperature increases by about 1 000 K while the vibrational temperature decreases by about 1 000 K. Energy exchange between translation and vibration modes is activated in the shock layer,resulting in the decrease of the vibrational temperature. However,the vibrational temperature is still higher than the rotational temperature,indicating that the vibrational relaxation process is not completed. In conclusion,the thermochemical state of the CO2- Ar arc plasma flow is in the vibrational nonequilibrium state along the stagnation streamline around the disk model.  相似文献   

13.
This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that the tapering of the electrode in an argon arc is caused by electron condensation on the side of the electrode. Formerly Graduate Student, Massachusetts Institute of Technology  相似文献   

14.
A mathematical model is developed to describe the globular transfer in gas metal arc welding (GMAW). This work is both theoretical and experimental. Using the volume-of-fluid (VOF) method, the fluid-flow and heat-transfer phenomena are dynamically studied during the following processes: droplet formation and detachment, impingement of a droplet on a solid substrate, impingement of multiple droplets on the molten pool, and solidification after the arc extinguishes. A He-Ne laser, in conjunction with the shadow graphing technique, is used to observe the metal transfer processes. Theoretical predictions and experimental results are in close agreement, suggesting that the theoretical treatment of the model is good.  相似文献   

15.
In the present work, a method is developed for determining the optimal concentration of nanostructured powder in the protective gas in welding by a floating electrode in argon. The theoretical analysis is confirmed by experiments with molybdenum nanopowder, which is introduced in the welding bath through a special device. The apparatus used for surfacing of the sample includes a GSP-2 welding head combined with the specially developed device and a VS-300B power source. In surfacing 12Kh18N10T steel samples, 12Kh18N19T steel welding wire (diameter 1.2 mm) is employed. To ensure a satisfactory weld joint, the dendrite dimensions must be minimized. Stable welding is ensured by transfer of a droplet of electrode metal from the end of the welding wire to the welding bath. Hence, the droplet volume must also be minimized. Before optimizing the concentration of nanostructured powder in the protective gas, the influence of the welding parameters on the microstructure of the surfaced metal is established. The results show that the grain size is smallest with a current of 240–260 A and an arc voltage of 28–30 V. In those conditions, the optimal concentration of nanostructured powder in the protective gas is determined. It is found that the optimal concentration is 20 mg per 1 m of weld seam. The use of different concentrations of nanostructured powder in the protective gas results in different microstructure of the applied metal. When the concentration of nanostructured powder in the protective gas is 20 mg per 1 m of weld seam, the branching of the dendrites is least and the dendrite size corresponds to equilibrium structure. On adding nanostructured powder to the liquid bath, the mechanical properties of the weld joints are increased by 7.5% at +20°C and by 6.5% at +500°C.  相似文献   

16.
Shielded metal arc welding (SMAW) and metal inert gas (GMAW) welding process are the two most widely used welding processes. These processes are widely used for the construction and fabrication purpose in almost all type of industries. Some of the important factors which govern the weld quality in these welding processes are welding power sources, role of shielding gas (for GMAW process), welding consumables and skill of the welders. Currently, effects of these factors are evaluated by examining the quality of the weld produced and not by monitoring how welding process is affected by change in these factors. This is an indirect method because actual contribution made by individual parameter in physical process is effectively ignored. Further, this is expensive and time-consuming as the assessment can be carried out only after the weld is completed. Hence, a procedure to assess the quality of welding process using the data acquired while welding is in progress is preferred to testing of the weld for this purpose. In both SMAW and GMAW processes, welding speed, voltage and current are important parameters that affect the quality of the welds. Among these, monitoring of welding speed is relatively easy; but monitoring voltage and current is not. This is because, welding is a stochastic process in which wide variation in voltage and current occurs and duration of these variations is so short that they are not observed in the voltage and current displayed in the power source. However, with the help of a high-speed data acquisition system, voltage and current variations during actual welding process can be recorded and subsequently analysed to reveal very useful information on the welding process, and subsequently quality analysis of individual welding parameters can also be done. In the present study, the voltage and current signals acquired using a digital storage oscilloscope have been used to study SMAW and GMAW processes. Data was acquired for duration of 20 s at a sampling rate of 100,000 samples/s while welding is in progress. In the case of SMAW process, welding data was acquired for welds made using different welding power sources, but with same welder and same type of electrode. In the case of GMAW process, welds were made using same wire and same welder but with different gases for shielding and at different set currents. Dynamic variation in the voltage and current signals were carefully studied using time domain and statistical analyses. Results showed that differences in the characteristics of the different power sources used for SMAW process and effect of shielding gases and arc current on GMAW process could be easily revealed by such analysis. For SMAW process, results obtained could also be correlated with the appearance of the weld beads. Hence, a procedure involving high-speed data acquisition of voltage and current signal while welding is in progress and the statistical analysis of the acquired data have been proposed for monitoring of these two arc welding processes.  相似文献   

17.
采用基于反向再燃弧电压产生电路的变极性焊接电源为试验平台,研究了电源设备及其控制参数、焊接回路电缆寄生电感和焊接工艺参数对变极性焊接电流换向过程的影响规律. 试验结果表明,提高反向再燃弧电压值能够提升变极性过程的电流变化速率,而较大的焊接回路电缆寄生电感会降低电流变化速率,同时降低变极性结束时的电流值,不利于变极性过程的电弧可靠再引燃和稳定燃烧. 初始焊接电流越小,则变极性过程结束时的电流值越小,增加共同导通时间可以提高变极性结束时的电流值,但同时降低变极性开始时的电流大小. 因此小电流变极性焊接时可采用较大的反向稳压值并适当增加共同导通时间,以增强变极性过程中的电弧稳定性.   相似文献   

18.
本文用Ar+20%CO_2气体保护焊方法对15MnVN钢进行插销试验,试验结果表明,焊接线能量在15~40 kJ/cm范围内,插销试验的临界断裂应力高于15MnVN钢的屈服强度;也高于用J507焊条及J557MoV焊条电弧焊15MnVN钢插销试验的临界断裂应力。观察金相试样得知,15MnVN钢焊接热影响区组对焊接线能量比较敏感,脆硬马氏体及粗大铁素体的产生都会降低插销试样的临界断裂应力。为使15MnVN钢焊接热影响区获得最佳组织和最好的抗裂性能,焊接线能量应选择20~30 kJ/cm。  相似文献   

19.
采用CO2焊代替手工电弧焊及埋弧自动焊,经过工艺性能试验及实际操作后,认为CO2焊是可行的。  相似文献   

20.
Methane injection into the arcs of electric arc furnaces has been shown on pilot scale to lead to a remarkable arc voltage increase at constant arc current and arc length. Recent investigations have been concerned with the associated metallurgical effects making use of a gas‐tight 150‐kg arc furnace operated with two AC plasma torches. A first test with bored graphite electrodes in this furnace confirmed the power increase observed during methane injection. The carburization slowly occurring when 6 % CH4 were injected into the argon atmosphere of the furnace could be avoided by adding minor amounts of CO2. A slag layer decreased mass transfer rates without noticeably affecting heat transfer. Manganese loss by evaporation was measured to investigate the influence of power increase and slag layers. From the results, an increase of 200 K was concluded for the melt surface temperature when CH4 was added to pure argon. Methane injection into the arcs proved to accelerate nitrogen removal considerably. Starting with an intentionally high nitrogen content of about 200 ppm, the nitrogen removal rate was found to be slowest with pure argon plasma arcs, faster with 90 % Ar + 10 % H2, and fastest with 95 % Ar + 5 % CH4 reaching final contents of less than 20 ppm of nitrogen. Based on thermodynamic calculations, the denitrogenation reactions appear to take place via atomic nitrogen in pure argon plasma, via NH3 in Ar + H2 and via HCN in Ar + CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号