共查询到18条相似文献,搜索用时 93 毫秒
1.
对TC4钛合金分别进行了920℃、940℃、960℃、980℃保温1 h空冷的退火,随后进行了金相检验、拉伸试验和拉伸断口分析,以揭示退火温度对合金显微组织和拉伸性能的影响。结果表明:不同温度退火的TC4合金组织主要由初生α相和次生α相组成,随着退火温度的升高,初生α相含量减少;随着退火温度的升高,合金的强度升高,塑性降低,980℃退火的合金抗拉强度和屈服强度最高,为973 MPa和961 MPa,而塑性最差,断后伸长率为2%,断面收缩率为8%;在920℃和940℃退火的合金拉伸断口有大量韧窝,具有韧性断裂特征,960℃和980℃退火的合金拉伸断口韧窝数量明显减少,出现明显的撕裂棱和解离台阶,具有韧-脆性断裂特征。 相似文献
2.
《塑性工程学报》2016,(4):125-129
根据TC4钛合金的超塑性变形机理研究成果,结合设定m值超塑性拉伸方法的设计思路,在VISUAL BASIC环境下编写出了设定m值超塑性拉伸控制程序。在完成对该程序充分调试的基础上,对TC4钛合金进行设定m值超塑性高温拉伸试验,在TC4钛合金最佳变形温度850℃的条件下,将m值分别设定为0.3、0.35、0.4、0.45进行高温拉伸试验,获得TC4钛合金延伸率δ分别为704%、762%、819%、858%,再将应变速率敏感指数m值与延伸率δ对应后生成关系曲线并进行回归分析,最终得到TC4钛合金超塑性应变速率敏感指数m值与伸长率δ的关系式。 相似文献
3.
通过高温拉伸试验、高温持久拉伸试验以及金相分析对TC4钛合金电子束焊接接头的显微组织和高温性能进行了研究.结果表明,用电子束焊接TC4钛合金可获得高温性能良好的焊接接头,其焊接接头的高温抗拉强度为630 MPa,与母材相当.高温持久拉伸时焊接接头在400 ℃下100 h的持久强度大于600 MPa,不低于TC4钛合金母材同等条件下的持久强度.TC4钛合金母材室温下的组织为典型的轧制状态组织,即拉长了的针状α β组织,焊缝组织是由原始β相转变而成的α'相,即针状马氏体.经高温拉伸和高温持久拉伸后焊缝晶粒均明显长大,但其晶粒的长大程度与高温持续时间无关. 相似文献
4.
对TC1钛合金棒材室温下和高温下的拉伸性能、显微组织和断口进行了分析.结果表明:随着实验温度的升高,TC1钛合金的强度显著下降,伸长率基本保持不变,断面收缩率明显增加.室温下的断口形貌均为延性断裂和细小的等轴韧窝,随着实验温度的升高,韧窝尺寸增大,深度增加. 相似文献
5.
TC4-DT钛合金电子束焊接接头的拉伸性能 总被引:1,自引:0,他引:1
用电子束焊接50 mm厚TC4-DT钛合金板,对母材、焊缝金属和焊接接头的拉伸性能进行测试,获得了母材和焊缝金属的基本拉伸性能数据,分析了电子束焊接接头显微组织对拉伸性能的影响.结果表明,电子束焊接使TC4-DT钛合金焊缝金属强度增加,塑性和韧性降低,应变硬化能力增强.焊接接头拉伸试验的断裂位置均在离焊缝边缘较远的母材上,母材为整个接头的薄弱环节.母材和焊缝金属拉伸断口均表现出延性韧窝断裂特征.与母材金属相比,焊缝金属拉伸性能的变化与电子束焊接过程中冷却速度快、在焊缝区形成了粗大β柱状晶及针状马氏体有关. 相似文献
6.
7.
8.
选取4种不同厚度的TC4钛合金轧制板材,利用金相显微镜以及力学性能试验,对其进行金相组织和力学性能研究。结果表明:经轧制及退火后的TC4钛合金板材的组织为α相与残余β相组成的混合组织,α相的形貌呈现出线条状、等轴状以及细小团状等特征;TC4钛合金板材强度总体呈现出随着厚度的增加先降低再趋于稳定的趋势,而塑性呈现出先升高再趋于稳定的趋势;当厚度为0.8 mm时,TC4钛合金板材的强度最大,抗拉强度为1075 MPa、屈服强度为1027 MPa,且4种规格TC4钛合金板材经轧制退火后沿RD与TD方向的强度与塑性均有一定差值;不同规格TC4钛合金板材拉伸后的微观断口形貌均以韧窝为主,其中厚度为0.8 mm的TC4钛合金板材沿TD方向的断口形貌中除具有韧窝形貌外,还具有一定数量的小平面,韧窝内部存在大量、特别细小的微裂纹。 相似文献
9.
采用直流稳压电源,在Na2SiO3、Na3PO4电解液中对TC4钛合金表面进行微弧氧化处理,研究了微弧氧化对TC4钛合金高温抗氧化性能的影响.结果表明,经微弧氧化的TC4合金高温抗氧化性能明显优于TC4钛合金;在750℃循环氧化100h后,经300V电压微弧氧化60 min的TC4钛合金的氧化增重为7.8 mg/cm2,而未经微弧氧化处理的TC4钛合金氧化增重为30.51 mg/cm2;随着微弧氧化时间增长和电压的增大,微弧氧化TC4钛合金的高温抗氧化性能也增强. 相似文献
10.
11.
12.
为揭示固溶温度(850、920、960℃)对TC4钛合金微观组织和动态拉伸力学性能的影响,采用XRD、SEM和EBSD方法对材料晶体结构、微观组织和晶粒取向等特征进行分析,选取分离式霍普金森拉杆(SHTB)实验装置进行了材料的动态拉伸力学性能测试,构建了Johnson-Cook(J-C)本构模型,开展了动态拉伸断口形貌分析。结果表明:随固溶温度的升高,材料中α/α′含量升高,初生α相含量降低,针状α′含量升高,晶粒尺寸减小且择优取向强度增大;TC4钛合金具有明显的应变率强化效应,随固溶温度的升高,材料屈服强度和维氏硬度逐渐增大,断裂延伸率降低;动态拉伸断口整体表现为韧性断裂,随固溶温度升高,材料塑性降低,在固溶温度960℃时,试样韧性断裂特征不显著。本研究结果可为TC4钛合金力学性能调控及抗冲击设计提供方法和数据支撑。 相似文献
13.
TC4钛合金高温变形行为及其流动应力模型 总被引:6,自引:4,他引:6
研究变形工艺参数对TC4钛合金高温变形行为的影响.热模拟压缩实验时选取的变形温度为1 093~1 303K:应变速率为0.001~10.0/s;变形程度为60%.结果表明:TC4钛合金在变形开始阶段,流动应力随应变的增加迅速增加,当应变超过一定值后,流动应力开始下降并逐渐趋于稳定,出现稳态流动特征;变形温度升高和应变速率减小使TCA钛合金高温变形时的稳态应力和峰值应力显著降低;应变速率和变形温度会影响TC4钛合金进入稳态变形时变形程度的大小.利用多元回归分析建立TC4钛合金在高温变形时的流动应力模型,模型的计算值与实验数据的平均相对误差为6.25%,该模型较好地描述TC4钛合金在高温变形过程中的流动行为. 相似文献
14.
15.
通过大量Gleeble-1500热模拟实验机上压缩实验,求出TC4钛合金生产条件下的本构模型。指出试制备、设备控制以及数据修正方法,给出实验结果数据,为指导钛合金锻造生产提供必要依据。 相似文献
16.
17.
基于TC4合金高温恒应变速率拉伸试验和微观组织观察,研究了工艺参数对TC4合金流动应力、应变速率敏感性指数、应变硬化指数和微观组织演变的影响规律,获得了TC4合金高温拉伸变形时宏观力学行为与微观组织演变的关联机制。结果表明:当变形温度为1123~1213 K、应变速率为0.1 s-1时,TC4合金的拉伸应变不超过0.7就会出现局部颈缩并导致开裂;当应变速率为0.01 s-1、变形温度为1183 K时,TC4合金的应变速率敏感性指数m值最大,归因于该变形条件下初生α相呈等轴状且较细小;当应变速率为0.01 s-1时,随着应变增加,应变硬化指数n值呈逐渐减小的趋势,归因于加工硬化和动态软化的共同作用;随着变形温度升高,初生α相由长条状转变为等轴状,随着应变速率增加,初生α相呈现出明显的取向性,不利于晶界滑动或旋转;应变对初始α相形貌和含量影响较小,但对次生α相影响显著。 相似文献
18.
研究了不同准β热处理工艺对TC4-DT钛合金显微组织和力学性能的影响,并对显微组织、力学性能断口形貌进行了对比分析。结果表明随着固溶温度从Tβ+10℃升高到Tβ+25℃,合金初生片状α相长宽比变大,次生α相含量升高,塑性下降,抗拉强度升高。冷却速率的下降对于初生片状α相有粗化效果,降低初生片状α相的长宽比,对应的抗拉强度升高,塑性降低。固溶时间的延长,初生片状α相宽度变大,长宽比下降,次生片状α相长宽比变大。TC4-DT钛合金拉伸断口存在大小不一的韧窝,随固溶温度的升高和时效时间的延长,试样拉伸断口韧窝的尺寸均有不同程度的变大,同时出现了少量的撕裂棱,试样的断裂机制为以韧性断裂为主并伴有准解理断裂。 相似文献