首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
黑山选铁尾矿选钛试验研究   总被引:1,自引:0,他引:1  
黑山选铁尾矿矿石性质复杂,绿泥石含量较高,分选困难。采用弱磁选—强磁选—粗精矿再磨—浮选联合工艺以及广州有色金属研究院自主研制的钛浮选系列药剂,最终取得了钛精矿TiO2品位46.5%、回收率(相对强磁粗选给矿)大于50%的工业试验指标。  相似文献   

2.
为了解决微细粒辉钼矿难以通过传统浮选回收的难题,以煤油为添加剂,以聚团粒度与规则度为表征手段,探讨微细粒辉钼矿疏水聚团过程中聚团的形成、破坏和重组形为,并在此基础上研究了聚团对微细粒辉钼矿浮选效果的影响。结果表明:聚团的形成与搅拌速度和煤油用量密切相关;搅拌速度越高,聚团形成越快;煤油用量可以显着提高聚团强度,以承受高应力剪切,煤油用量越高,使得聚团破碎和重组所需要的搅拌速度越大,时间越长;聚团规则度受搅拌速度和煤油用量影响非常明显,搅拌速度越大,煤油用量越大,聚团变得越规则。与常规浮选相比,聚团浮选使得微细粒辉钼矿的上浮率显著提高,聚团浮选效果与疏水聚团过程中搅拌强度紧密相关,搅拌速度越高,达到最大上浮率所需时间越短,添加煤油能够显著提高辉钼矿上浮率。  相似文献   

3.
某铁尾矿再回收铁矿物试验研究   总被引:3,自引:4,他引:3  
对某TFe品位为18.57%的铁尾矿进行了再回收试验研究。通过预富集、弱磁选可获得铁品位66.09%、回收率26.08%的弱磁选精矿;对弱磁选尾矿进行强磁选-阴离子反浮选可获得铁品位54.29%、回收率37.29%的反浮选精矿。对反浮选产品进行分析可知, 铁闪石无选择性分配是造成反浮选作业选别效率低的主要原因。  相似文献   

4.
某镜铁矿选矿工艺试验研究   总被引:1,自引:0,他引:1  
某地镜铁矿石中主要铁矿物为镜铁矿和赤铁矿,脉石矿物主要为方解石、部分泥质物质和少量石英。采用重选、强磁选、强磁-重选及强磁-反浮选等联合工艺,对该矿石进行了分选试验。结果表明,对这种类型的镜铁矿,采用强磁-反浮选工艺,在原矿铁品位为35.00%的情况下,可获得铁精矿品位66.62%、回收率58.38%的良好技术指标。  相似文献   

5.
铁坑褐铁矿选矿工艺研究   总被引:2,自引:1,他引:1  
通过铁坑褐铁矿磨矿细度、强磁选、浮选、浮选中间产品选矿的试验,磨矿-强磁-再磨反浮选流程试验,磨矿-强磁-再磨强磁-反浮选流程试验和扩大连续选矿试验,制定了铁坑褐铁矿选矿的合理工艺流程,并确定磨矿-强磁选-再磨强磁选-反浮选工艺为选厂工业设计推荐流程,较好地解决了褐铁矿选矿工艺问题。  相似文献   

6.
张玲  王素玲 《矿冶工程》2017,37(4):48-50
对铁品位34%左右的某铜铁矿山选铜尾矿进行了单一强磁选、强磁选-重选、强磁选-磨矿-反浮选、强磁选-磨矿-强磁选-反浮选、磨矿-强磁选-反浮选的多方案试验研究, 经对比分析, 最终确定采用磨矿-强磁选-反浮选工艺, 可获得精矿铁品位63.17%、回收率70.30%的良好指标。  相似文献   

7.
宣钢龙烟鲕状赤铁矿强磁-反浮选试验研究   总被引:2,自引:0,他引:2  
牛福生  白丽梅  吴根  于洋  孙达 《金属矿山》2008,38(2):49-52,101
为更好地开发利用张家口地区的鲕状赤铁矿资源,采用阶段磨选的强磁-反浮选工艺流程,对该地区有代表性的宣钢龙烟铁矿鲕状赤铁矿石进行了选矿试验。试验结果表明,以SLon脉动高梯度磁选机为强磁选设备,以NaOH、淀粉、CaO和TS为反浮选药剂,在一段为-200目65%、二段为-200目95%的磨矿细度下,经过2次强磁选和一粗一精反浮选,可以获得较好的分选指标,精矿铁品位为62.34%、铁回收率为53.07%。  相似文献   

8.
马钢罗河尾矿可供利用的元素为铁,主要杂质是SiO_2,CaO、Al_2O_3和S含量较高,为回收尾矿中铁元素,开展了试验研究。结果表明:尾矿经强磁—磨矿—强磁分选后,可获得TFe品位45.84%的强磁预富集精矿,单一强磁选不能获得合格铁精矿;强磁精矿经1粗1精反浮选,可获得精矿铁品位52.17%、回收率15.95%的最终铁精矿。  相似文献   

9.
某微细粒赤铁矿选矿工艺研究   总被引:3,自引:1,他引:2  
对某微细粒赤铁矿分别采用阶段磨矿—重选—弱磁选—高梯度强磁选—反浮选工艺流程和阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程进行了选别试验,前者获得的铁精矿铁品位为64.88%,铁回收率为79.91%,后者获得的铁精矿铁品位为65.45%,铁回收率为79.84%。从选别指标、流程结构及磨矿成本考虑,推荐采用阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程。  相似文献   

10.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

11.
东鞍山烧结厂浮选尾矿TFe品位为22.82%,FeO含量为9.87%,SiO2的含量为51.24%,S和P含量较低,均为0.03%,属于低硫、低磷、高硅型铁尾矿。此外,该尾矿-0.038 mm粒级含量高达56.44%,同时铁矿物主要集中在该粒级中,铁分布率达到67.62%。为了实现该铁尾矿的高效回收利用,本试验采用搅拌磨磨矿—弱磁选—强磁粗选—强磁精选—反浮选流程开展了系统的试验研究。结果表明:在搅拌磨磨矿细度为?0.038 mm占95%、弱磁选磁感应强度95 kA/m、强磁粗选磁场磁感应强度796 kA/m、强磁精选磁场磁感应强度398 kA/m的条件下,可获得TFe品位为38.20%、TFe回收率为63.51%的混合磁选精矿指标;将混合磁选精矿在矿浆温度40 ℃、矿浆pH值为11.5、淀粉用量1000 g/t、CaO用量900 g/t、粗选捕收剂TD-2用量600 g/t、一次精选捕收剂TD-2用量为300 g/t、二次精选捕收剂TD-2用量为300 g/t的条件下进行反浮选,闭路试验可获得TFe品位为62.34%、TFe作业回收率为55.10%的浮选精矿。全流程TFe回收率为35.00%,综合尾矿TFe品位为17.01%。试验结果可为东鞍山浮选尾矿中的铁矿物高效选矿回收提供指导。   相似文献   

12.
针对齐大山铁矿选矿分厂反浮选工艺不能有效回收微细粒铁矿物,导致尾矿品位较高的现象,在实验室以石油磺酸钠作为捕收剂和絮凝剂,进行了齐大山铁矿选矿分厂磁选精矿剪切絮凝正浮选研究。结果表明:使磁选精矿发生剪切絮凝的适宜条件为磨矿细度-0.037 mm占85%,矿浆pH=3,石油磺酸钠用量5 kg/t,水玻璃用量300 g/t,搅拌强度2 200 r/min,剪切絮凝时间6 min。在此条件下将磁选精矿剪切絮凝后进行1粗3精1扫闭路浮选,获得了精矿铁品位为66.80%,回收率为95.93%,尾矿铁品位仅5.03%的较好指标。  相似文献   

13.
袁家村铁矿生产流程中混磁精矿再磨溢流粒度较细、含泥量较高,仅经浓缩后直接进行反浮选,存在药剂成本高、浮选设备能耗高、精矿质量波动等问题。为解决上述问题,对再磨溢流(TFe品位42.70%)进行了强磁选脱泥-反浮选新工艺技术研究,采用平环ZH型三盘强磁选机可以抛出产率25.95%、TFe品位13.78%的尾矿,减少了入浮矿量,使入浮给矿TFe品位提高至52.84%。全流程闭路试验获得了TFe品位65.48%、回收率87.67%的铁精矿,与原生产指标相比,回收率提高了7.67个百分点。  相似文献   

14.
吴红  王小玉  刘军  张永 《金属矿山》2021,50(9):79-84
山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题。因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程。结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(143 kA/m)、强磁选(1 114 kA/m)工艺流程,可使强磁选尾矿铁品位降至6.18%,此时铁回收率损失仅为4.82%。②以二段弱磁选—强磁选流程替代原絮凝脱泥工艺,在二段磨矿细度为-0.038 mm占85%的条件下,二段弱磁选、强磁选磁场强度分别为143 kA/m、637 kA/m,浮选给矿铁品位由39.90%大幅提高至48.36%,浮选给矿中-10 μm粒级含量由27.22%降低至22.19%,-20 μm粒级含量由48.79%降低至44.21%。③对二段弱磁选+强磁选混合精矿采用“1粗1精3扫”闭路浮选流程,在1次粗选浮选浓度为25%、温度为30 ℃的条件下,依次添加NaOH 1 200 g/t、淀粉1 000 g/t、CaO 500 g/t,RA-915粗选、精选用量分别为900 g/t、150 g/t,最终可获得铁品位66.13%、铁回收率88.44%的浮选铁精矿,此时浮选尾矿铁品位为15.83%。优化后的试验流程降低了强磁选尾矿铁品位,同时提高了浮选给矿的铁品位,降低了浮选提质降杂难度,对同类型的铁矿石开发利用具有借鉴意义。 关键词 微细粒|铁矿石|高梯度强磁选|阴离子反浮选  相似文献   

15.
针对酒钢镜铁山粉矿强磁选工艺存在的精矿铁回收率和品位均较低的问题,东北大学在对强磁预富集精矿进行工艺矿物学分析的基础上,进行了悬浮磁化焙烧扩大试验研究。结果表明:酒钢粉矿强磁预富集精矿TFe品位为39.02%,预富集精矿含铁矿物主要为赤铁矿和菱铁矿,铁分布率分别为67.81%、28.36%,脉石矿物主要为石英、白云石和重晶石;粉矿采用强磁选抛尾-悬浮焙烧-磁选-反浮选新工艺,最终获得了TFe品位60.67%、SiO2含量4.52%的合格铁精矿,铁回收率为76.27%。与原单一强磁选工艺相比,新工艺的精矿铁品位提高了16.11个百分点,SiO2含量降低了6.83个百分点,铁回收率提高了14.43个百分点,精矿指标有了较大幅度的提高,为下一步粉矿资源的高效利用提供了技术依据。  相似文献   

16.
针对弓长岭赤铁矿的浮选尾矿进行了磨矿—强磁选—中磁选预选实验,预选获得的磁选粗精矿铁品位为41.71%,产率为33.62%,铁回收率为84.21%;对比了浮选柱及浮选机粗选两种浮选工艺流程对预选粗精矿提质的影响。单因素实验结果表明浮选柱较佳工作参数为给矿压力0.08 MPa、充气量0.05 m3/h。经过浮选柱和两台浮选机组成的一粗一精一扫流程闭路实验,可以获得再选精矿产率为18.89%,品位为65.29%,铁回收率为74.07%的技术指标,相比于单一浮选机工艺的浮选铁品位和回收率,分别提高了0.27个百分点和2.61个百分点。  相似文献   

17.
随着入选铁矿石中菱铁矿含量的升高,东鞍山混磁精反浮选精矿铁品位和铁回收率均呈下降趋势。为了确保高菱铁矿矿石资源的顺利开发,并改善反浮选精矿指标,东北大学用新研制的改性脂肪酸类常温捕收剂DTX-1,对东鞍山混磁精进行了先正浮选菱铁矿、后反浮选石英等脉石矿物的分步浮选试验。结果表明,对东鞍山选矿厂混磁精进行1次开路正浮选菱铁矿,1粗1精2扫、中矿顺序返回闭路反浮选脱硅,最终可获得铁品位为6587%、铁回收率为6792%的铁精矿,与现场1粗1精3扫、中矿顺序返回闭路反浮选精矿指标比较,精矿铁品位和铁回收率分别提高了2.47和2.82个百分点,在工艺流程复杂性相当的情况下,产品指标得到了显著改善。  相似文献   

18.
铁矿选矿厂使用脂肪酸类阴离子捕收剂反浮选铁矿物,存在捕收剂用量大、所需浮选温度高、浮选指标差等问题。东北大学研发了一种新型酰胺基羧酸捕收剂DWD-3,并应用于司家营混磁精反浮选脱硅。实验室试验结果表明,在浮选温度为25 ℃,粗选矿浆pH=11.5、DWD-3用量为400 g/t、CaCl2用量为400 g/t、玉米淀粉用量为 1 000 g/t时,经1粗1精3扫闭路反浮选,能获得精矿铁品位66.48%、回收率80.32%,尾矿铁品位16.35%的指标。以捕收剂DWD-3代替现场捕收剂GK-68可使浮选温度由40 ℃降至25 ℃,并且精矿铁品位提高了0.39个百分点、回收率提高了2.23个百分点,尾矿铁品位降低了1.57个百分点。对浮选产品分析表明,精矿中存在20 μm以下的紧密连生体;尾矿中有大量较大颗粒连生体,且连生体中铁矿物与脉石部分相互浸染连生,是尾矿铁品位较高的原因。  相似文献   

19.
为了确定抚顺某磁铁矿石生产超级铁精矿的工艺流程进行了选矿试验。试验采用高压辊磨闭路辊压(湿筛)—粗粒中场强磁选—磨矿分级—弱磁选—预先分级—磨矿分级—弱磁选—浮选流程处理。在高压辊磨机工作压力为8.5 MPa、一段磨矿细度为-0.075 mm占65%,高品位铁精矿高频细筛筛孔宽为0.075 mm,塔磨再磨细度为-0.038 mm占90%,高纯铁精矿1粗2精阳离子反浮选,捕收剂十二胺分段添加量为16.37+8.18+3.27 g/t情况下,可获得:全铁品位为68.01%、全铁回收率为86.21%的高品位铁精矿;全铁品位70.95%、全铁回收率为42.32%的高纯铁精矿,全铁品位为65.40%、全铁回收率为43.89%的副产铁精矿;全铁品位为71.81%、全铁回收率为17.93%、酸不溶物含量0.14%的超级铁精矿,全铁品位为67.08%、全铁回收率为68.28%的副产铁精矿。  相似文献   

20.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号