共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
目的 多层特征对于显著性检测具有重要作用,多层特征的提取和融合是显著性检测研究的重要方向之一。针对现有的多层特征提取中忽略了特征融合与传递、对背景干扰信息敏感等问题,本文基于特征金字塔网络和注意力机制提出一种结合空间注意力的多层特征融合显著性检测模型,该模型用简单的网络结构较好地实现了多层特征的融合与传递。方法 为了提高特征融合质量,设计了多层次的特征融合模块,通过不同尺度的池化和卷积优化高层特征和低层特征的融合与传递过程。为了减少低层特征中的背景等噪声干扰,设计了空间注意力模块,利用不同尺度的池化和卷积从高层特征获得空间注意力图,通过注意力图为低层特征补充全局语义信息,突出低层特征的前景并抑制背景干扰。结果 本文在DUTS,DUT-OMRON(Dalian University of Technology and OMRON Corporation),HKU-IS和ECSSD(extended complex scene saliency dataset) 4个公开数据集上对比了9种相关的主流显著性检测方法,在DUTS-test数据集中相对于性能第2的模型,本文方法的最大F值(MaxF)提高了1.04%,平均绝对误差(mean absolute error,MAE)下降了4.35%,准确率—召回率(precision-recall,PR)曲线、结构性度量(S-measure)等评价指标也均优于对比方法,得到的显著图更接近真值图,同时模型也有着不错的速度表现。结论 本文用简单的网络结构较好地实现了多层次特征的融合,特征融合模块提高了特征融合与传递质量,空间注意力模块实现了有效的特征选择,突出了显著区域、减少了背景噪声的干扰。大量的实验表明了模型的综合性能以及各个模块的有效性。 相似文献
3.
显著性目标检测旨在寻找图像中的视觉显著区域。现有的显著性目标检测方法已经展现出强大的优势,但依然在尺度感知和边界预测方面具有局限性。首先,各类场景中的显著目标存在诸多尺度,使算法难以适应不同尺度变化。其次,显著目标往往具有复杂的轮廓,这使边界像素点的检测变得更为困难。针对以上问题,文中提出了基于特征融合与边界修正的显著性目标检测网络,该网络基于特征金字塔,提取了不同层次显著特征。首先针对目标的尺度多样性设计了由多尺度特征解码模块组成的特征融合解码器,通过逐层融合相邻层特征,提高了网络对目标尺度的感知能力。同时设计了边界修正模块学习显著目标的轮廓特征,以生成边界清晰的高质量显著图。在5个常用显著性目标检测数据集上进行实验,结果表明所提算法在平均绝对误差、F指标和S指标3项定量指标上均能取得较优的结果。 相似文献
4.
显著性目标检测是获取图像中视觉显著目标的任务,它是计算机视觉及相关研究领域的重要内容。当前在复杂的自然场景下基于深度学习的算法依然存在特征学习不足和检测错误率较高的问题,因此提出一种新颖的基于多特征融合的显著性目标检测算法。以HDHF(hybrid deep and handcrafted feature)模型的预测显著图作为特征,融合全局像素的深度特征。此外,利用显著性提名获取候选目标的位置,并在各候选目标中添加中心先验。在全卷积神经网络中,利用前向传播算法最终预测得到像素级的显著性目标。在四个包含多个显著性目标和复杂背景的图像数据集上进行验证,实验结果表明,该算法有效地提高了复杂场景下显著性目标的检测精度,尤其是在背景复杂的图像上具有较优的检测效果。 相似文献
5.
为解决微表情识别领域数据集样本数量少,样本类型分布不均导致识别率鲁棒性差的问题,提出了一种基于双流增强网络的微表情识别模型。该模型基于单帧RGB图像流及光流图像流的双流卷积神经网络,以权威数据集为基础,数据增强为基准,构建微表情识别模型。通过在SoftMax逻辑回归层融合单帧空域信息和光流时域信息,对两个独立流的网络性能进行提升,并通过引入基于带循环约束的生成对抗网络的图像生成方式对数据集进行扩充。通过将输入微表情视频帧序列进行分解,将其分割为双流网络的灰度单帧序列与光流单帧序列,对两类序列图进行数据增强,再进行微表情识别模型构建的方法,有效提高了微表情识别率。基于双流增强网络的微表情识别模型可以较好提升微表情识别准确度,鲁棒性较好,泛化状态较稳定。 相似文献
6.
为了有效融合RGB图像颜色信息和Depth图像深度信息, 提出一种基于贝叶斯框架融合的RGB-D图像显著性检测方法.通过分析3D显著性在RGB图像和Depth图像分布的情况, 采用类条件互信息熵(Class-conditional mutual information, CMI)度量由深层卷积神经网络提取的颜色特征和深度特征的相关性, 依据贝叶斯定理得到RGB-D图像显著性后验概率.假设颜色特征和深度特征符合高斯分布, 基于DMNB (Discriminative mixed-membership naive Bayes)生成模型进行显著性检测建模, 其模型参数由变分最大期望算法进行估计.在RGB-D图像显著性检测公开数据集NLPR和NJU-DS2000上测试, 实验结果表明提出的方法具有更高的准确率和召回率. 相似文献
7.
《计算机应用与软件》2017,(8)
显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-OMON上进行了实验,从PR曲线、F-Measure方法、MAE绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 相似文献
8.
9.
目的 显著性检测是图像和视觉领域一个基础问题,传统模型对于显著性物体的边界保留较好,但是对显著性目标的自信度不够高,召回率低,而深度学习模型对于显著性物体的自信度高,但是其结果边界粗糙,准确率较低。针对这两种模型各自的优缺点,提出一种显著性模型以综合利用两种方法的优点并抑制各自的不足。方法 首先改进最新的密集卷积网络,训练了一个基于该网络的全卷积网络(FCN)显著性模型,同时选取一个现有的基于超像素的显著性回归模型,在得到两种模型的显著性结果图后,提出一种融合算法,融合两种方法的结果以得到最终优化结果,该算法通过显著性结果Hadamard积和像素间显著性值的一对一非线性映射,将FCN结果与传统模型的结果相融合。结果 实验在4个数据集上与最新的10种方法进行了比较,在HKU-IS数据集中,相比于性能第2的模型,F值提高了2.6%;在MSRA数据集中,相比于性能第2的模型,F值提高了2.2%,MAE降低了5.6%;在DUT-OMRON数据集中,相比于性能第2的模型,F值提高了5.6%,MAE降低了17.4%。同时也在MSRA数据集中进行了对比实验以验证融合算法的有效性,对比实验结果表明提出的融合算法改善了显著性检测的效果。结论 本文所提出的显著性模型,综合了传统模型和深度学习模型的优点,使显著性检测结果更加准确。 相似文献
10.
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 相似文献
11.
基于生成对抗网络的多视图学习与重构算法 总被引:2,自引:0,他引:2
同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重构算法,利用已知单一视图,通过生成式方法构建其他视图.为构建多视图通用的表征,提出新型表征学习算法,使得同一实例的任意视图都能映射至相同的表征向量,并保证其包含实例的重构信息.为构建给定事物的多种视图,提出基于生成对抗网络的重构算法,在生成模型中加入表征信息,保证了生成视图数据与源视图相匹配.所提出的算法的优势在于避免了不同视图间的直接映射,解决了训练数据视图不完整问题,以及构造视图与已知视图正确对应问题.在手写体数字数据集MNIST,街景数字数据集SVHN和人脸数据集CelebA上的模拟实验结果表明,所提出的算法具有很好的重构性能. 相似文献
12.
针对水下图像对比度低和颜色失真等问题,提出一种特征融合生成对抗网络的水下图像增强算法.首先,对水下退化图像进行颜色校正,并以卷积神经网络提取颜色校正后图像的特征;其次,以基于U-Net的特征提取网络提取水下退化图像特征,并将其与颜色校正图像的特征融合;最后,通过卷积神经网络完成融合特征到增强图像的重构.在Underwa... 相似文献
13.
提出了一种利用人类视觉机制进行图像融合的算法。首先对源图像进行金字塔分解;接着对低频和高频分量采用不同的融合策略,低频分量依据最大显著性准则选择融合像素,高频分量利用相关性加权准则选择融合像素。初步融合后的低频和高频分量经金字塔重建获得最终融合结果。金字塔变换可提供多分辨率的图像表示,但不区分图像区域的重要性;而视觉显著性检测可定位图像最显著区域,但对噪声敏感;两算法的结合能取长补短,获得好的融合结果。实验表明,提出的方法优于已发表的其他基于金字塔变换的图像融合算法,适用于多聚焦图像、多波段图像和多光谱图像融合。 相似文献
14.
基于内容的图像拷贝检测关键在于提取的图像特征能够针对不同形式的图像拷贝攻击具有不变性。现实中拷贝攻击手段变化多样,且存在很多相似图像的干扰,目前并没有任何一种图像特征可以对抗所有不同形式的图像攻击。现有方法虽然在图像特征表示上做了很多改进,但都局限于单个特征表示。因此从特征融合的角度对提取特征进行增强,基于卷积神经网络融合图像高层特征以及低层特征以实现特征多样性,集成ImageNet预训练分类模型以及提出的距离度量模型以实现特征互补性。度量模型针对该类问题在预训练模型的基础上通过学习合适的距离度量来对抗由于图像编辑引起的特征差异,拉近拷贝图像与原始图像在特征空间的距离。实验结果表明,结合模型集成和多层深度特征融合的方式可以有效增强特征的鲁棒性,相比单一特征的检测效果提升十分明显。 相似文献
15.
融合显著信息的层次特征学习图像分类 总被引:3,自引:0,他引:3
高效的图像特征表示是计算机视觉的基础.基于图像的视觉显著性机制及深度学习模型的思想,提出一种融合图像显著性的层次稀疏特征表示用于图像分类.这种层次特征学习每一层都由3个部分组成:稀疏编码、显著性最大值汇聚(saliency max pooling)和对比度归一化.通过在图像层次稀疏表示中引入图像显著信息,加强了图像特征的语义信息,得到图像显著特征表示.相比于手工指定特征,该模型采用无监督数据驱动的方式直接从图像中学习到有效的图像特征描述.最后采用支持向量机(support vector machine, SVM)分类器进行监督学习,实现对图像进行分类.在2个常用的标准图像数据集(Caltech 101和Caltech 256)上进行的实验结果表明,结合图像显著性信息的层次特征表示,相比于基于局部特征的单层稀疏表示在分类性能上有了显著提升. 相似文献
16.
近年来,基于全卷积网络的显著性物体检测方法较手工选取特征的方法已经取得了较大的进展,但针对复杂场景图像的检测仍存在一些问题需要解决.提出了一种新的基于全局特征引导的显著性物体检测模型,研究深层语义特征在多尺度多层次特征表达中的重要作用.以特征金字塔网络的编解码结构为基础,在自底而上的路径中,设计了全局特征生成模块(GG... 相似文献
17.
随着深度学习方法的发展, 深度造假(Deepfake)技术越发成熟。大量近似真实自然的图像涌入人们的生活, 在满足个人娱乐兴趣的同时, Deepfake技术的滥用对个人隐私、经济市场乃至国家安全构成了潜在威胁。因此,针对虚假图像的检测方法亟待研究。现有的虚假图像检测技术大多存在准确率低、泛化性差、鲁棒性不足的问题, 因此, 本文从Deepfake技术的图像生成机制出发, 对生成的虚假图像存在缺陷进行分析, 并提出了一种基于生成对抗网络的虚假图像检测模型。该模型利用离散傅里叶变换方法将图像从图像域转换到频域, 并将U-Net结构和谱归一化引入鉴别器; 利用生成对抗网络优异的特征学习和提取能力, 实现了虚假图像的模式分类。此外, 一种新颖的复合损失函数被提出, 以增强模型检测性能。提出的方法分别在7个单独数据集和1个混合数据集上进行实验验证, 并采用3种实验指标进行模型性能分析。本文方法在单独数据集上最高可达到100%准确率, 最低准确率也可达88.53%; 模型检测召回率, 精确率和F1分数平均分别可达98.17%, 98.25%, 98.19%。此外, 无论是在混合数据集, 还是在模型未知的跨数据集上, 提出方法都能获得良好的模型检测性能。即使在图像压缩的情况下, 本文方法仍然具有较强的鲁棒性。实验与理论结果表明, 与现有先进的虚假图像检测方法相比, 本文方法是一种有效且具有良好泛化性和鲁棒性的虚假图像检测方法。 相似文献
18.
针对基于颜色直方图的显著图无法突出边缘轮廓和纹理细节的问题,结合图像的颜色特征、空间位置特征、纹理特征以及直方图,提出了一种基于SLIC融合纹理和直方图的图像显著性检测方法。该方法首先通过SLIC算法对图像进行超像素分割,提取基于颜色和空间位置的显著图;然后分别提取基于颜色直方图的显著图和基于纹理特征的显著图;最后将前两个阶段得到的显著图进行融合得到最终的显著图。此外,通过简单的阈值分割方法得到图像中的显著性目标。实验结果表明,与经典显著性检测算法相比,提出的算法性能明显优于其他算法性能。 相似文献
19.
RGB-D图像显著性检测旨在提取三维图像中的显著目标.为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法.利用VGG网络分离出RGB图像和深度图像的浅层与深层特征,而后进行特征提取;以跳层结构为基础连接提取到的特征,实现融合深度、颜色、... 相似文献
20.
在通用的目标检测算法中,目标多变的尺度和特征融合利用一直是限制目标检测任务的难题.针对上述问题,首先文中提出了多路径特征融合模块,模块采用跨尺度跨路径特征融合的方法,强化输入输出特征之间的联系,缓解了特征信息在传递时的稀释问题.同时,文中通过改进注意力模型提出了尺度感知模块,该模块能根据目标的尺度自行地选择感受野大小,从而使模型易于识别多尺度目标.将尺度感知模块嵌入到多路径特征融合模块中,使模型的特征提取和利用能力均得到提升.经实验验证,文中提出的算法在数据集PASCAL VOC和MS COCO上的平均检测精度分别达到了82.2%和38.0%,相比基线FPN Faster RCNN分别提升了1.3%和0.6%,其中对小尺度目标的检测效果提升最为显著. 相似文献