首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
检测和分割场景中动态物体对于建立一致性地图至关重要.针对当前点云动态物体检测算法依赖大量含有动态属性标注的数据、限制激光雷达扫描方式等问题,提出了一种基于连续点云的动态物体检测算法.将待预测点云、相邻帧点云以及通过SLAM(simultaneous localization and mapping)得到的位姿信息作为输入,利用点云场景流估计算法逐点估计移动情况,结合点云聚类、主成分分析(principal component analysis,PCA)等技术,整合场景流结果以获取实例级移动信息以判断物体的动态属性,并将点云语义分割作为判别点是否属于可移动类别的插件以提升动态物体识别精度.所提算法不需要具有动态属性的标注数据进行训练,并且对传感器的扫描方式、生成的点云数没有任何限制;与现有最先进的方法进行对比,具有易于训练、判断准确、结果鲁棒等特性.  相似文献   

2.
王浩  卢德玖  方宝富 《机器人》2022,44(4):418-430
目前视觉SLAM(同步定位与地图创建)方法在动态环境下易出现漏剔除动态物体的问题,影响相机位姿估计精度以及地图的可用性。为此,本文提出一种基于增强分割的RGB-D SLAM方法。首先结合实例分割网络与深度图像聚类的结果,判断当前帧是否出现漏分割现象,若出现则根据多帧信息对分割结果进行修补,同时,提取当前帧的Shi-To...  相似文献   

3.
为提高机器人在动态场景下的SLAM(simultaneous localization and mapping)精度,同时实现对动态目标的跟踪,提出了一种融合动态目标的视觉SLAM方法。首先,通过预处理模块获取RGB(red,green,blue)图像的光流向量、实例分割结果及深度图信息;其次,迭代求解相机位姿、地图点和动态目标位置的初始值;最后,通过一种改进的因子图优化方法对3种状态变量的初始值进行联合优化。在KITTI数据集上的测试实验结果表明,该算法实现了融合动态目标跟踪的视觉SLAM功能,同时有效地提高了动态目标的跟踪精度及动态场景下的SLAM精度,总体效果优于VDO-SLAM(visual dynamic object-aware SLAM)。  相似文献   

4.
点云分割是逆向工程中模型重建的关键技术之一,然而在求取点云特征时非常耗时,通过OpenCL异构计算对其进行性能加速有着重要的现实意义。以散乱无序的点云为研究对象,通过OpenCL对点云分割算法加以改进。算法主要分为并行计算点云数据的特征值,并行计算点云数据的法向量和曲率3个步骤。在计算中,根据GPU的并行结构和硬件特点,优化了数据存储结构,提高了数据访问效率,降低了算法复杂度。实验结果表明,算法充分利用了OpenCL的并行处理能力,运行效率是基于CPU实现的16倍。  相似文献   

5.
针对2D激光SLAM(同步定位和地图构建)机器人导航中激光点云匹配计算量大、轨迹闭合效果差、位姿累积误差大、以及各环节传感器观测数据利用不充分等问题,提出一种基于多层次传感器数据融合的实时定位与建图方法——Multilevel-SLAM.首先,在数据预处理方面,利用IMU(惯性测量单元)数据预积分结果为激光点云配准提供坐标转换依据.对激光点云进行特征采样,降低点云匹配计算量.其次,通过无迹卡尔曼滤波算法融合IMU、LiDAR (激光雷达)观测量得到机器人位姿,来提高闭环检测效果.最后,将激光点云配准约束、闭环约束、IMU预积分约束加入到SLAM算法的后端优化中,对全局地图位姿节点估计提供约束配准,实现多层次的数据融合.在实验中利用LiDAR-IMU公开数据集对Karto-SLAM、Cartographer和Multilevel-SLAM算法进行性能测试对比.Multilevel-SLAM算法的定位精度始终保持在5 cm以内,而对比方法则存在不同程度的定位偏移.实验结果表明,在没有显著增加计算量的前提下,Multilevel-SLAM算法有效提高了闭环处的轨迹闭合效果,具有更低的定位误差.  相似文献   

6.
目的 机器人在进行同时定位与地图构建(simultaneous localization and mapping,SLAM)时需要有效利用未知复杂环境的场景信息,针对现有SLAM算法对场景细节理解不够及建图细节信息缺失的问题,本文构造出一种将SLAM点云定位技术与语义分割网络相结合的未知环境地图构建方法,实现高精度三维地图重建。方法 首先,利用场景的实时彩色信息进行相机的位姿估计,并构造融合空间多尺度稀疏及稠密特征的深度学习网络HieSemNet(hierarchical semantic network),对未知场景信息进行语义分割,得到场景的实时二维语义信息;其次,利用深度信息和相机位姿进行空间点云估计,并将二维语义分割信息与三维点云信息融合,使语义分割的结果对应到点云的相应空间位置,构建出具有语义信息的高精度点云地图,实现三维地图重建。结果 为验证本文方法的有效性,分别针对所构造的HieSemNet网络和语义SLAM系统进行验证实验。实验结果表明,本文的网络在平均像素准确度和平均交并比上均取得了较好的精度,MPA(mean pixel accuracy)指标相较于其他网络分别提高了17.47%、11.67%、4.86%、2.90%和0.44%,MIoU(mean intersection over union)指标分别提高了13.94%、1.10%、6.28%、2.28%和0.62%。本文的SLAM算法可以获得更多的建图信息,构建的地图精度和准确度都更好。结论 本文方法充分考虑了不同尺寸物体的分割效果,提出的HieSemNet网络能有效提高场景语义分割准确性,此外,与现有的前沿语义SLAM系统相比,本文方法能够明显提高建图的精度和准确度,获得更高质量的地图。  相似文献   

7.
动态环境下的视觉SLAM研究评述   总被引:1,自引:0,他引:1       下载免费PDF全文
王柯赛  姚锡凡  黄宇  刘敏  陆玉前 《机器人》2021,43(6):715-732
针对动态环境下的视觉SLAM(同时定位与地图构建)系统,首先分析了环境中动态目标对经典视觉SLAM系统的危害性,并以一种新颖的方式将当前动态视觉SLAM系统分为基于相机自身运动的系统和不依赖于相机自身运动的系统两大类.随后分析总结了当前动态环境下视觉SLAM的研究进展.最后对动态环境下的视觉SLAM处理手段及未来发展趋势进行讨论与展望.  相似文献   

8.
针对当前视觉同步定位与地图构建(visual simultaneous localization and mapping,VSLAM)算法鲁棒性较差,无法生成适合自主导航的语义地图等问题,提出一种基于实例分割的视觉SLAM算法。在对输入图像提取特征点的同时,使用卷积神经网络对图像进行实例分割;利用实例分割信息辅助定位,剔除容易造成误匹配的特征点,缩小特征匹配的区域;使用实例分割的语义信息构建语义地图。使用TUM数据集对图像实例分割、视觉定位以及语义地图构建进行实验验证,验证结果表明,该算法提高了机器人定位的准确性,生成了精确的语义地图,满足机器人执行高级任务的需求。  相似文献   

9.
马亮  高亮  廉博翔  张琦  蔺小虎  姜之跃 《工矿自动化》2024,44(11):78-83, 151
面对煤矿井下低照度、弱纹理、高粉尘等复杂条件,现有煤矿巷道三维建模方法存在成本高、时效性差和精度低等问题,提出了一种基于已知点约束的高精度煤矿巷道三维点云建模方法。首先,通过体素滤波器对激光雷达点云数据进行降采样,并对降采样后的激光雷达点云数据利用迭代最近点(ICP)匹配提取出局部点云地图,结合惯性测量单元(IMU)数据对点云数据进行畸变校正;其次,利用ICP配准局部点云地图和畸变校正后的点云地图,以提高前端配准的精度和效率,并在后端加入回环检测来提高煤矿巷道定位与建图精度;然后,通过附合导线控制测量获取煤矿巷道分段已知点坐标,为点云建模提供全局约束条件;最后,将已知点和激光雷达同时定位与建图(SLAM)确定的测站点进行联合平差计算,对测站点坐标进行校正,并进一步利用非线性优化方法校正全局点云地图坐标,从而提高三维点云建模精度。实验结果表明:该方法构建的煤矿巷道三维点云地图具有较好的全局一致性和几何结构真实性,在煤矿井下具有较高的定位与建图精度。  相似文献   

10.
张满  侯宇轩  杨毅  付梦印 《机器人》2023,45(5):568-580
地面无人平台安全运行与高效决策均依赖于自身的精确定位和对环境的全面感知。针对单视角机器人感知受限问题, 提出了一种基于地空视角信息融合的激光SLAM(同步定位与地图构建)系统。首先, 系统引入无人机构建的空中点云地图作为先验信息。然后, 通过地空视角点云子图配准网络求取空中子图到地面局部地图的最优配准, 再基于多视角因子图优化框架融合空中先验信息和地面感知信息。最后, 在长约1000 m的工地环境道路上进行实验。相较于经典单视角激光SLAM系统, 本系统的平均平移误差下降了5.87 m, 平均旋转误差下降了1.67°。结果表明, 本系统有效提高了地面无人平台的定位精度。另外, 还通过地图融合有效弥补了地面无人平台由于路口结构、障碍遮挡等因素导致的感知盲区。  相似文献   

11.
本文基于深度学习的语义提取技术和视觉SLAM(simultaneous localization and mapping)技术相结合,提出了一种动态SLAM算法。该算法基于三类对象的投票和语义回环,能够有效地降低动态对象对SLAM系统的性能影响,同时提高定位和建图的精度。首先, 将语义对象分为静态对象、可能动态对象和一定动态对象三类,并使用基于重投影深度误差投票的方法来识别上述语义对象的运动状态,从而消除运动目标对算法的影响。然后,进一步地使用语义相似回环优化方法,提高了回环检测的鲁棒性。在TUM的RGB-D动态数据集和KITTI数据集上的实验结果表明,本文算法的平均绝对轨迹误差相比ORB-SLAM3算法分别降低了57. 13%和23. 39%,验证了算法在动态场景下的鲁棒性。  相似文献   

12.
面向动态物体场景的视觉SLAM综述   总被引:1,自引:0,他引:1       下载免费PDF全文
针对当前机器人导航、自动驾驶等领域中的热点问题——面向动态物体场景的视觉SLAM(同步定位与地图构建)——进行了综述.根据动态SLAM在定位与建图时对动态物体的不同处理方式,划分了3个研究方向:动态鲁棒性SLAM与静态背景重建、非刚性动态物体跟踪重建、以及移动物体跟踪与重建.对这3个研究方向分别进行了综述,并重点介绍结合了深度学习的动态SLAM方法.最后,展望了动态SLAM的未来发展方向.  相似文献   

13.
核安全一直是核应用领域关注的焦点,利用携带核辐射探测传感器的移动机器人代替传统人工探测已经成为发展趋势。为了解决在未知3维环境下对于表面辐射源的定位与监测,通过使用携带激光雷达、相机、IMU (inertial measurement unit)和核辐射探测传感器的移动机器人代替人工进行辐射监测,本文提出了一种基于LVI-SAM (Lidar-Visual-Inertial odometry via Smoothing and Mapping)的自主辐射地图构建框架。该地图构建框架结合同时定位和地图构建(SLAM)技术和辐射探测技术,在LVI-SAM框架下利用激光雷达和视觉信息对环境进行3维重建,然后将3维点云降维投影构建环境栅格地图,之后利用辐射传感器和LVI-SAM坐标系的变换关系确定辐射源在场景中的位置,实现将辐射地图和3维环境地图进行融合,可以完成对放射区域在3维环境中的定位。最后,在ROS (robot operating system)中搭建仿真环境。实验结果验证了3维环境下表面辐射地图构建方法的有效性。  相似文献   

14.
针对激光SLAM(同步定位与地图创建)的实时性和定位精度问题,为了克服初始位姿不准确情况下增大搜索范围和位姿匹配分辨率对实时性的影响,本文在传统ICP-SLAM(迭代最近邻SLAM)基础上进行改进,提出了一种分层搜索与匹配的快速ICP-SLAM方法.首先,在搜索范围内采用由粗到细的分辨率进行全局搜索,并通过逐渐增加待匹配点的密度进行分步匹配计算.点云匹配过程中,通过构建距离像计算待匹配点的最近邻距离值,其计算复杂度降低为O(1).其次,通过对点云匹配结果进行优先排序和剪枝,快速排除非最优解.最后,以半数全局最优与全数局部最优原则作为搜索结束判断条件,提高搜索效率.SLAM Benchmark数据集上的测试结果表明,相比于流行的激光SLAM算法Cartographer,所提出的方法取得了更小的平均误差和平方误差,计算效率为Cartographer算法的2~5倍.同时,工业AGV(自动导引车)的实际应用实验验证了在初始位姿未知的情况下,可实现实时的位姿估计与建图,重复定位精度优于1.5 cm.因此,这种快速ICP-SLAM方法能够保证实现准确的定位估计,具有良好的实时性.  相似文献   

15.
传统的RatSLAM算法中视觉处理受环境、光照的影响大,进而导致建图精度及稳定性下降。因此,提出了一种快速增量式视觉处理方法克服原RatSLAM系统中的视觉处理的缺陷。以一个改进型的二叉搜索树为检索算法,通过动态岛屿机制对图像进行分组,最终通过序列匹配的形式实现环境识别,达到了在线、准确、快速识别环境的目的。实验结果表明,所提算法的位置识别准确率高于99%,召回率高于80%,平均处理时间低于50ms。本系统的闭环性能、时间性能及建图稳定性均显著优于现有方案,进一步证明了基于快速增量式视觉处理方法的鲁棒性、高效性。  相似文献   

16.
潘林豪 《计算机应用研究》2021,38(6):1739-1743,1769
为提高视觉里程计(VO)在大尺度环境下运行的实时性,提出一种融合双目视觉与惯导信息的视觉里程计算法,主要由前端位姿跟踪和后端局部地图优化两个线程组成.位姿跟踪线程首先使用惯导信息辅助光流法进行帧间特征点跟踪并估计相机初始位姿;接着通过最小化图像光度误差获取当前帧像素点与局部地图点的对应关系;而后最小化当前帧上局部地图点的重投影误差和惯性测量单元(IMU)预积分误差,得到当前帧准确的位姿估计.后端局部地图优化线程对滑动窗口内的关键帧提取特征点并三角化新地图点,使用光束平差法(BA)对逆深度参数化表示的地图点位置、关键帧位姿、速度以及陀螺仪和加速度计零偏进行滑窗优化,为前端提供更加精确的局部地图相机位姿和环境信息.在EuRoC数据集上的实验表明,相比于ORB-SLAM2、ORB-SLAM3算法,该融合双目视觉与惯导信息的视觉里程计算法的定位精度略有下降,但可以较大程度地提高位姿跟踪的实时性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号