共查询到19条相似文献,搜索用时 78 毫秒
1.
地面无人平台安全运行与高效决策均依赖于自身的精确定位和对环境的全面感知。针对单视角机器人感知受限问题,提出了一种基于地空视角信息融合的激光SLAM(同步定位与地图构建)系统。首先,系统引入无人机构建的空中点云地图作为先验信息。然后,通过地空视角点云子图配准网络求取空中子图到地面局部地图的最优配准,再基于多视角因子图优化框架融合空中先验信息和地面感知信息。最后,在长约1000 m的工地环境道路上进行实验。相较于经典单视角激光SLAM系统,本系统的平均平移误差下降了5.87 m,平均旋转误差下降了1.67?。结果表明,本系统有效提高了地面无人平台的定位精度。另外,还通过地图融合有效弥补了地面无人平台由于路口结构、障碍遮挡等因素导致的感知盲区。 相似文献
2.
3.
针对2D激光SLAM(同步定位和地图构建)机器人导航中激光点云匹配计算量大、轨迹闭合效果差、位姿累积误差大、以及各环节传感器观测数据利用不充分等问题,提出一种基于多层次传感器数据融合的实时定位与建图方法——Multilevel-SLAM.首先,在数据预处理方面,利用IMU(惯性测量单元)数据预积分结果为激光点云配准提供坐标转换依据.对激光点云进行特征采样,降低点云匹配计算量.其次,通过无迹卡尔曼滤波算法融合IMU、LiDAR(激光雷达)观测量得到机器人位姿,来提高闭环检测效果.最后,将激光点云配准约束、闭环约束、IMU预积分约束加入到SLAM算法的后端优化中,对全局地图位姿节点估计提供约束配准,实现多层次的数据融合.在实验中利用LiDAR-IMU公开数据集对Karto-SLAM、Cartographer和Multilevel-SLAM算法进行性能测试对比.Multilevel-SLAM算法的定位精度始终保持在5 cm以内,而对比方法则存在不同程度的定位偏移.实验结果表明,在没有显著增加计算量的前提下,Multilevel-SLAM算法有效提高了闭环处的轨迹闭合效果,具有更低的定位误差. 相似文献
4.
针对当前视觉同步定位与地图构建(visual simultaneous localization and mapping,VSLAM)算法鲁棒性较差,无法生成适合自主导航的语义地图等问题,提出一种基于实例分割的视觉SLAM算法。在对输入图像提取特征点的同时,使用卷积神经网络对图像进行实例分割;利用实例分割信息辅助定位,剔除容易造成误匹配的特征点,缩小特征匹配的区域;使用实例分割的语义信息构建语义地图。使用TUM数据集对图像实例分割、视觉定位以及语义地图构建进行实验验证,验证结果表明,该算法提高了机器人定位的准确性,生成了精确的语义地图,满足机器人执行高级任务的需求。 相似文献
5.
6.
同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在过去几十年中取得了惊人的进步,并在现实生活中实现了大规模的应用。由于精度和鲁棒性的不足,以及场景的复杂性,使用单一传感器(如相机、激光雷达)的SLAM系统往往无法适应目标需求,故研究者们逐步探索并改进多源融合的SLAM解决方案。本文从3个层面回顾总结该领域的现有方法:1)多传感器融合(由两种及以上传感器组成的混合系统,如相机、激光雷达和惯性测量单元,可分为松耦合、紧耦合);2)多特征基元融合(点、线、面、其他高维几何特征等与直接法相结合);3)多维度信息融合(几何、语义、物理信息和深度神经网络的推理信息等相融合)。惯性测量单元和视觉、激光雷达的融合可以解决视觉里程计的漂移和尺度丢失问题,提高系统在非结构化或退化场景中的鲁棒性。此外,不同几何特征基元的融合,可以大大减少有效约束的程度,并可为自主导航任务提供更多的有用信息。另外,数据驱动下的基于深度学习的策略为SLAM系统开辟了新的道路。监督学习、无监督学习和混合监督学习等逐渐应用于SLAM系统的各个模块,如相对姿势估计、地图表... 相似文献
7.
8.
视觉同步定位与地图构建(SLAM)在动态干扰的情况下,导致定位精度下降且无法准确构建静态地图,提出一种结合光流和多视角几何的动态视觉SLAM系统,该系统是在ORB-SLAM2的基础上进行改进的。在追踪线程中引入处理后的光流信息,结合多视图几何,得到动态区域掩码对视野内图像帧进行分割,实现动态区域检测并滤除动态区域中的特征点,在保证视觉SLAM系统实时性的同时提高追踪准确度,替换原本的地图构建线程。在新的地图构建线程中,引入光流信息及Mobile NetV2实例分割网络。利用实例分割网络分割结果结合光流动态区域掩码对获取到的有序点云逐层分割,解决地图构建中动态物体造成的“拖影”问题。同时对分割后的点云团融合语义信息,最终构建静态语义八叉树地图。在TUM Dynamic Objects数据集上的实验结果表明,相较于ORB-SLAM2,在高动态场景序列测试中,该算法的定位精度平均提升70.4%,最高可提升90%。 相似文献
9.
针对机器人SLAM系统,在实际场景或低纹理场景中提取的有效特征点数量少,使得系统初始化效果差和定位精度不高的问题,提出了一种基于点线特征和IMU信息融合的双目惯导SLAM系统(Stereo Visual-Inertial state estimator based on opti-mized ORB point fea... 相似文献
10.
针对背景运动时的运动目标分割问题,提出了一种对视频序列中的多个运动目标进行分割和跟踪的新方法。该方法着眼于运动的且较为复杂的背景,首先利用光流约束方程和背景运动模型建立一个基于时空域的能量函数,然后用该函数进行背景运动速度的估算和运动目标的分割和跟踪。而时空域中的运动目标的最佳分割,乃是通过使该能量函数最小化来驱动时空曲面演化实现。时空曲面的演化采用了水平集PDEs(Partial Differential Equations)方法。实验中,用实际的图像序列验证了该算法及其数值实现。实验表明,该方法能够同时进行背景运动速度的估算、运动目标的分割和跟踪。 相似文献
11.
杨叶梅 《计算机与数字工程》2011,39(9):108-110,160
该文为了实现对运动目标的检测,重点研究了基于梯度的Horn&Schunck光流算法,然后提出一种高斯金字塔的改进光流法,并结合最大类间方差的图像分割法和形态学滤波中的开、闭运算,完成运动区域的提取。实验仿真结果和数据表明改进的光流算法能准确获取运动目标区域,并更加省时。 相似文献
12.
点云分割是基于点云数据空间几何信息提取的一项重要工作,它是点云数据特征提取与分析的基础。同时,点云数据通常是离散的和非结构化的,点云数据的分割不是一项简单的数据处理任务,分割效率和分割精度决定了后续数据处理工作的结果。因此,研究点云数据分割具有重要意义。提出一种基于自适应角度的三维点云切割算法,使用PCA算法找到最佳降维投射方向,以降低原始点云数据维度,并利用投射簇的概念实现对原始目标点云的切割获取。 相似文献
13.
为降低室外大规模点云场景中多类三维目标语义分割的计算复杂度,提出一种融合区块特征的语义分割方法。采用方形网格分割方法对三维点云进行区块划分、采样以及组合,求取简化的点云组合区块集,将其输入至区块特征提取和融合网络中从而获得每个区块的特征修正向量。设计点云区块全局特征修正网络,以残差的方式融合特征修正向量与原始点云全局特征,修正因分割造成的错误特征。在此基础上,将方形网格分割尺寸作为神经网络的参数引入反向传播过程中进行优化,从而建立高效的点云语义分割网络。实验结果表明,反向传播算法可以优化分割尺寸至最佳值附近,所提网络中的全局特征修正方法能够提高语义分割精度,该方法在Semantic3D数据集上的语义分割精度达到78.7%,较RandLA-Net方法提升1.3%,且在保证分割精度的前提下其点云预处理计算复杂度和网络计算时间明显降低,在处理点数为10万~100万的大规模点云时,点云语义分割速度较SPG、KPConv等方法提升2~4倍。 相似文献
14.
为了实现点云模型的有意义分割,提出一种基于谱聚类的分割算法.首先用图G表示点云模型,将分割问题转化为图切割问题;然后根据归一化的非对称Laplacian矩阵构造谱聚类空间;最后通过移除掉多余的特征向量,在一个更低维的空间中找到了分割问题的松弛解.文中还给出了该算法相关定理的证明,并通过实验验证了算法的正确性和有效性. 相似文献
15.
张亚昕 《计算机与数字工程》2014,(1):69-72
将对象的运动轨迹作为一个整体聚类,将丢失相似子轨迹段有用的信息.为了找出相似子轨迹段,提出针对某一个轨迹进行子轨迹的聚类算法,先把长轨迹在特征点分割为一组直子段,再用基于密度的聚类算法对子段进行聚类,得到子段的可达距离排序并生成可达性图,最后根据生成的可达性图识别聚类结构.实验结果表明该方法能有效准确地识别相似子轨迹段. 相似文献
16.
针对视频处理中数据量大、消耗时间长的缺点,在假定"背景像素总是以较高的频率在图像序列中出现"的前提下,提出了一种新的运动目标分割方法。首先将待处理的视频图像序列经过DWT变换(Discrete Wavelet Trans-form)提取其近似分量,然后利用像素点聚类方法,结合双阈值和相似类合并,选择一段时间内频率出现较高的像素值来重构背景,最后借鉴图像匹配的评价标准来验证重构背景的准确性。实验结果表明,该方法能提取出较好的背景,从而实现对运动目标的高效且完整分割。 相似文献
17.
针对智能监控系统中对多个运动目标进行图像分割这一问题,提出一种引入区域种子的多运动目标分割算法.算法首先利用背景减算法获得包含多个运动目标的前景图像,再利用四叉树分解方法获得与前景图像对应的稀疏矩阵,通过稀疏矩阵中数值的分布情况,计算出包含运动目标的区域种子点,从这些种子点出发,利用主动轮廓模型进行并行目标轮廓提取,最终完成多运动目标图像分割.实验结果证明本文算法能有效分割出前景图像中多个运动目标,分割结果与人眼视觉的判断相近,并行轮廓提取使算法具有良好的实时性. 相似文献
18.
一种面向停车场场景的运动目标检测与跟踪方法 总被引:2,自引:0,他引:2
针对采用固定相机的停车场场景监控视频中可能出现运动目标较长时间停留的情况,提出一种帧间差(Frame difference)和运行期均值(Running average)相结合的运动目标检测方法,然后在卡尔曼滤波以及运动目标直方图和轮廓信息的辅助下实现运动目标的跟踪.实验结果表明,该方法可以在满足实时监控的需求下较好的检测与跟踪停车场场景中的运动目标. 相似文献