首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用光学显微镜、拉伸试验机等研究了不同淬回火工艺对20MnSi钢显微组织与力学性能的影响.结果表明:经920℃淬火后,20MnSi试验钢的组织为板条状马氏体.当淬火温度升高到960℃时,组织中马氏体发生粗化.在840~960℃,随着淬火温度的升高,试验钢强度先升高后降低,920℃淬火试验钢的强度达到最大值.在420~6...  相似文献   

2.
万荣春 《钢管》2015,44(2):18-21
采用拉伸试验、硬度试验和金相分析等方法,研究了25Mn2V钢在不同温度(850,880,910,950,1 000,1 050℃)淬火+600℃回火后的力学性能和显微组织。结果表明:25Mn2V钢调质处理淬火温度为910℃时,其力学性能最高;但当淬火温度达到950℃时,钢材淬火组织明显粗化,力学性能下降。  相似文献   

3.
通过光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)和力学性能、耐磨性能检测等方法研究了淬火温度对NM550组织和性能的影响规律。结果表明,在800~1000℃范围内随淬火温度的升高,试验钢的显微组织由铁素体和马氏体的复相组织转变为全马氏体组织。随淬火温度的增加,试验钢的原始奥氏体晶粒尺寸不断增大,导致马氏体板条块(Block)尺寸不断增大,大角度晶界的数量逐渐减少。在830~900℃之间淬火时,试验钢的强度、硬度和低温冲击性能良好;当淬火温度高于920℃时,强度略有下降,而硬度和韧性的下降幅度较大,尤其是试验钢的硬度降低到530 HBW以下。淬火温度在860~900℃时,试验钢具有最佳的耐磨性能。  相似文献   

4.
通过全自动相变仪、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等,研究880~1100 ℃淬火温度对30 mm厚Q690D钢显微组织、原始奥氏体晶粒尺寸、-20 ℃低温冲击性能和冲击断口形貌的影响。结果表明,当淬火温度低于950 ℃时,试验钢奥氏体平均晶粒尺寸小于10 μm,随着淬火温度的升高,Nb、V、Ti微合金碳化物溶入奥氏体量增加,-20 ℃低温冲击吸收能量逐渐升高;当淬火温度由950 ℃升高至1100 ℃,随着奥氏体晶粒快速长大,试验钢-20 ℃冲击吸收能量由最大值150 J降低至19 J;Q690D钢的最佳淬火工艺为950 ℃×20 min,水冷。  相似文献   

5.
13Cr超级马氏体不锈钢的组织   总被引:1,自引:0,他引:1  
采用TEM、SEM等研究13Cr超级马氏体不锈钢不同热处理后的的显微组织。结果表明,试验用钢淬火后的组织为板条马氏体。800、850、900、950、1000、1050和1100℃淬火后试样原始奥氏体晶粒尺寸为16.8~56.88μm;随淬火温度的升高原始奥氏体晶粒逐渐长大,马氏体板条束逐渐粗大。不同温度淬火650℃回火,A钢和B钢的组织均为保留原马氏体位相的细小回火马氏体。试样在1050℃淬火并在不同温度回火后有逆变奥氏体产生,在650℃以下回火时随着回火温度的升高和保温时间的延长逆变奥氏体含量逐渐增多,且回火后逆变奥氏体主要以长条状及菱形状分布于马氏体板条束间及奥氏体晶界处。  相似文献   

6.
研究了油冷淬火条件下,不同淬火温度对含8%Cr、1.5%B和1.5%Al的Fe-Cr-B-Al合金显微组织和性能的影响。结果表明,合金铸态组织由M2(B,C)(M=Fe,Cr,Mn)、(Cr,Fe)7(C,B)3、马氏体和珠光体组成。淬火处理后,硼碳化物出现了明显的孤立和团球化现象,导致合金抗拉强度和冲击韧性增加。淬火温度超过950℃时,基体转变成马氏体,导致合金硬度升高。淬火温度超过1050℃后,硼碳化物出现粗化现象。合金在1050℃淬火时,综合性能良好。  相似文献   

7.
对自行设计的矿山球磨机衬板用中合金马氏体耐磨铸钢在900、950、1000、1050、1100 ℃淬火后回火,研究了淬火温度对试验钢组织和性能的影响。试验结果表明,经过淬火、回火处理后的试验钢显微组织由板条马氏体和残留奥氏体组成。当保持回火温度250 ℃不变,随着淬火温度的升高,马氏体组织先变细密后又变粗大,抗拉强度、冲击性能及残留奥氏体含量均呈现先增大后减小的趋势,在1050 ℃淬火取得最优综合力学性能:抗拉强度1623 MPa,冲击性能14.4 J,此时试验钢的强化机理为孪晶马氏体和高密度位错缠结。通过冲击磨损试验解释了试验钢在该工艺下的磨损行为与磨损机理。  相似文献   

8.
淬火工艺对BR1500HS超高强度硼钢板组织与性能的影响   总被引:1,自引:0,他引:1  
研究了淬火加热温度和保温时间对BR1500HS超高强度硼钢板的抗拉强度、硬度等力学性能和显微组织的影响。结果表明,随着淬火温度的升高,抗拉强度和硬度逐渐增加,当保温时间大于8 min时,淬火温度越高,组织越粗大,试验钢的抗拉强度和硬度降低。试验钢合理的淬火工艺为:淬火温度900~950 ℃、保温时间4~8 min,在此工艺下淬火的BR1500HS超高强度硼钢板马氏体转变完全,具有较好的综合力学性能。  相似文献   

9.
研究了不同温度(950、1000、1050℃)淬火+250℃回火处理对中碳低合金耐磨钢ZG35Cr2NiMoVTi显微组织、硬度、韧性、冲击磨料磨损耐磨性能的影响。结果表明:中碳低合金耐磨钢淬火组织主要为板条状马氏体+片状马氏体+少量残余奥氏体,回火组织为回火马氏体。随着淬火温度的增加,钢的硬度逐渐下降;冲击韧性随着淬火温度的升高先增加后保持稳定。在冲击功为1J的磨损工况下,950℃水淬+250℃回火处理试样耐磨性最好;在冲击功为4.5J的磨损工况下,1000/1050℃水淬+250℃回火处理的试样耐磨性最好。  相似文献   

10.
对10CrMnMo双相钢在不同亚温淬火温度下热处理后的试样进行了显微组织、SEM形貌、显微硬度测试、马氏体含量以及马氏体-铁素体两相的晶粒尺寸分析。结果表明,不同的淬火温度致使马氏体和铁素体的显微形态和分布状况发生变化,淬火温度为720 ℃时马氏体呈狭长的岛状分布,随着淬火温度的升高,马氏体呈片状与岛状共存,到820 ℃时板条马氏体与铁素体呈纤维状共存;同时,马氏体体积分数也随之增加,由720 ℃淬火时的10.41%增加到820 ℃时的48.19%;马氏体、铁素体的晶粒大小都随着淬火温度的升高而减小,铁素体晶粒尺寸由720 ℃淬火时的14.23 μm减小到820 ℃时的4.15 μm,马氏体尺寸则由5.74 μm减小至2.45 μm,且不同淬火温度下铁素体晶粒尺寸均大于马氏体晶粒尺寸;双相钢中铁素体组织的显微硬度随着淬火温度的升高而增加,由720℃时的168.21 HV1增加至820 ℃时的235.15 HV1;马氏体组织的显微硬度则随淬火温度的升高而降低,由720 ℃时的713.14 HV1降低到820 ℃时的525.41 HV1。  相似文献   

11.
通过光学显微镜(OM)、拉伸试验机、冲击试验机等研究了不同温度淬火对ZG25MnCrNiMo钢组织及性能的影响。结果表明:淬火态ZG25MnCrNiMo钢组织为板条马氏体。在840~930 ℃温度区间,随着淬火温度的升高,组织中板条马氏体逐渐变细,930 ℃淬火试验钢板条最为细小。ZG25MnCrNiMo钢经840~930 ℃淬火后,进行600 ℃回火,随着淬火温度的升高,试验钢抗拉强度先升高后降低,伸长率和低温冲击吸收能量先降低后升高。930 ℃淬火试验钢抗拉强度最大,为992 MPa。840 ℃淬火试验钢伸长率和-40 ℃低温冲击吸收能量最大,分别为17.1%和78 J。  相似文献   

12.
王琪  吴光亮 《金属热处理》2022,47(4):146-150
研究了920 ℃水淬+不同温度回火后1100 MPa级高强钢的显微组织和力学性能。结果表明:回火温度为250 ℃时,所得到的力学性能最佳,抗拉强度、屈服强度、硬度、断后伸长率和冲击吸收能量分别为1423 MPa、1220 MPa、446 HV5、14.2%和56 J。随回火温度的升高,抗拉强度、屈服强度、硬度值整体呈现下降的趋势,冲击吸收能量先减小后增加。回火温度为150 ℃时,组织为回火马氏体和ε碳化物,析出的ε碳化物呈细长杆状。回火温度上升到250 ℃之后,马氏体板条稍有粗化,ε碳化物长大。随回火温度继续升高,板条马氏体逐渐转变为等轴铁素体,ε碳化物也会转变为渗碳体并逐渐球化粗化。  相似文献   

13.
陈建华  蓝秀琼 《金属热处理》2020,45(11):163-166
利用光学显微镜和透射电镜(TEM)研究了PRO500高强装甲钢经淬火、回火后显微组织与力学性能的演变规律。结果表明:870 ℃淬火组织为板条马氏体,随回火温度升高,马氏体逐渐完成分解,并伴随细小的碳化物颗粒析出、聚集长大,硬度总体呈逐渐下降趋势,600 ℃回火的硬度最低达到274 HV10;试验钢400 ℃回火可获得优良的综合力学性能,此时硬度为389 HV10,抗拉强度为1710 MPa,规定塑性延伸强度为1460 MPa,断后伸长率为11.0%。  相似文献   

14.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

15.
通过Cr、Mo等合金化设计出新型槽帮铸钢,利用扫描电镜、拉伸、冲击试验机及布氏硬度计等研究了新型槽帮钢在不同热处理条件下的组织与性能变化。结果表明,添加Cr、Mo等合金元素提高了钢的淬透性和回火稳定性,细化组织并促进碳化物析出,热处理后钢的强度、硬度、塑性和韧性得到明显改善。ZG-1试验钢经900、920℃淬火、500℃回火时抗拉强度为999~1002 MPa,屈服强度931~933 MPa,断后伸长率15.0%~14.0%,室温硬度296~298 HBW,冲击吸收能量61.0~63.0 J;ZG-2试验钢920℃淬火、500~520℃回火时强韧性更优异,抗拉强度1039~1011 MPa,屈服强度981~947 MPa,断后伸长率15.0%~15.3%,室温硬度305~298 HBW,冲击吸收能量64.5~67.5 J,可以满足刮板输送机中部槽材料的性能要求。  相似文献   

16.
对一种新型高级别低合金高强度耐磨钢NM600进行热处理实验,研究了淬火温度和回火温度对实验钢组织和力学性能的影响,并分析了最优工艺条件下实验钢的磨损性能。结果表明:当淬火温度为880 ℃,回火温度为180 ℃时,实验钢力学性能最优,其中维氏硬度、抗拉强度、伸长率和-40 ℃冲击功分别为628 HV、2 000 MPa、7.3%、27.8 J,实验钢组织为典型的板条马氏体结构,马氏体板条内部及其板条界面上分布着细小均匀的碳化物。三体冲击磨损实验结果表明:工艺优化后的实验钢的耐磨性能与瑞典SSAB公司生产的HARDOX600相近,是NM400钢的1.376倍,抗磨损性能良好。  相似文献   

17.
研究了淬火温度对高Ti低合金耐磨钢组织转变、析出相和力学性能的影响,并分析了组织演变和力学性能变化的原因。结果表明:试验钢经不同温度淬火和200 ℃回火后的组织均为高位错密度板条马氏体;析出相尺寸主要为微米-亚微米-纳米三种尺度,微米级析出相呈杆棒状,亚微米以及纳米析出相呈球状,马氏体板条上分布着细小的(Ti, Mo)C析出相。随着淬火温度的升高,试验钢的屈服强度、抗拉强度和维氏硬度均先升高后降低,均在920 ℃时有最大值,分别为1248 MPa、1535 MPa和434 HV,此时伸长率为10.0%。随淬火温度升高,纳米级析出相逐渐回溶,数量减少且尺寸逐渐长大,沿轧制方向被压扁拉长的原奥氏体晶粒尺寸以及马氏体板条块尺寸略有增大,但马氏体板条宽度却无明显长大。大量的弥散分布的5~10 nm的(Ti, Mo)C粒子是促进耐磨钢硬度升高的主要因素。细小的(Ti, Mo)C析出相逐渐长大以及原奥氏体晶粒的增大都不利于耐磨钢硬度的提高。  相似文献   

18.
研究了不同温度“零保温”淬火工艺下,40Cr钢的显微组织与性能的变化规律。结果表明,在850~910 ℃下“零保温”淬火和550 ℃回火后,40Cr钢的硬度、抗拉强度和冲击吸收能量随温度的升高先增加后降低。890 ℃“零保温”淬火和550 ℃回火时,钢的硬度、抗拉强度和冲击吸收能量达到最高值,这些性能均优于同温度下保温淬火时试验钢的性能。40Cr钢“零保温”淬火性能的提高与其淬火后得到的细小板条状马氏体组织、奥氏体晶粒的细化和奥氏体中碳浓度分布不均匀有关。  相似文献   

19.
徐文芳  张朋彦  杨鹏 《金属热处理》2020,45(11):187-191
对在线淬火型微合金高强结构钢在400~600 ℃范围内进行回火40 min处理,以研究不同回火温度对试验钢显微组织和力学性能的影响。通过光学显微镜、扫描电镜等进行组织观察分析,同时测量试验钢回火后的强度、硬度及-40 ℃冲击吸收能量等进行力学性能分析。试验结果表明:随着回火温度的升高,试验钢强度及硬度整体呈下降趋势,冲击性能整体上升,并在450~500 ℃出现回火脆性区。同时随着回火温度升高,试验钢组织中马氏体逐渐宽化减少,铁素体含量增多。450 ℃回火时,试验钢的组织为回火托氏体,此时其屈服强度和硬度分别为840 MPa和304 HV3,断后伸长率为14.4%,-40 ℃冲击吸收能量为129 J,达到良好综合力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号