首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.  相似文献   

2.
Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite. Formerly Adjunct Research Professor with the Materials Engineering Group, Naval Postgraduate School Formerly Graduate Student at NPS  相似文献   

3.
Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at −20 °C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effect of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO2, γ Al2O3, or MnO. Al2O3 as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 μm in diameter. The combination of more oxide inclusions greater than 1 μm and less acicular ferrite is considered to be the explanation for the lower Charpy values.  相似文献   

4.
高强度低合金钢焊缝金属的组织及其影响因素   总被引:1,自引:0,他引:1  
HSLA钢焊缝金属组织主要是由先共析铁素体、侧板条铁素体和针状铁素体组成,针状铁素体具有良好的韧性和强度配比,是HSLA钢焊缝金属最希望得到的组织。从合金元素、焊接参数和夹杂物三个方面对针状铁素体组织的形成进行阐述,以期为HSLA钢的使用及配套焊丝的开发等相关研究提供一定的借鉴。  相似文献   

5.
The present study has been carried out to investigate the coarse-grained heat-affected zone (CGHAZ) microstructure and crack tip opening displacement (CTOD) toughness of grade StE 355 Ti-microalloyed offshore steels. Three parent plates (40-mm thick) were studied, two of which had Ti microalloying with either Nb + V or Nb also present. As a third steel, conventional StE 355 steel without Ti addition was welded for comparison purposes. Multipass tandem submerged arc weld (SAW) and manual metal arc weld (SMAW) welds were produced. Different heat-affected zone (HAZ) microstructures were simulated to ascertain the detrimental effect of welding on toughness. All HAZ microstructures were examined using optical and electron microscopy. It can be concluded that Ti addition with appropriate steel processing, which disperses fine TiN precipitates uniformly, with a fine balance of other microalloying elements and with a Ti/N weight ratio of about 2.2, is beneficial for HAZ properties of StE 355 grade steel.  相似文献   

6.
Series of submerged arc welds of HSLA steel made with three different fluxes and metallic additions of Ti, Mo, and Cr have been examined to study the inclusions and their role in the nucleation of acicular ferrite. Inclusion phases and compositions have been analyzed by electron diffraction and X-ray microanalysis. These analyses have shown that the inclusions contained many different compounds, the proportions of each depending upon both the flux and metallic additions. Six inclusion phases have been identified: galaxite (Al2O3 ⋅ MnO), a titanium-rich compound (probably TiO), a copper sulfide, a manganese sulfide, a silica, and an aluminum-rich phase. No correlation was found between the amount of acicular ferrite in the weld metal and either average inclusion composition or individual inclusion phases. No epitaxial relationships between inclusions and adjacent ferrite grains could be identified. It has been concluded that inclusions nucleate acicular ferrite by acting as inert substrates according to the classical theory of heterogeneous nucleation. Because most inclusions are multi-phase and are touched by several ferrite grains, it has also been concluded that each inclusion can nucleate several ferrite grains, due to local regions of high surface energy on the inclusion.  相似文献   

7.
The characteristics of inclusions in high strength structural steel were characterized by scanning electron microscopy and energy dispersive spectroscopy. The influence of Ti- alloying and Ca treatment on the composition of inclusions in the steel was investigated, and the effect of oxides on the precipitation behavior of TiN and its refining effect on the microstructure were studied. The results show that the inclusions in the steels are Al- Ti- Mg- O system with spherical or polygonal shape after adding Ti, which furtherly can be effectively modified into spherical inclusions after adding Ca. The TiOx in inclusions can be reduced by Ca treatment and Ti gradually diffuses into the surface of the inclusions, which promotes the local precipitation of TiN on the surface of the composite oxides. The amounts of fine oxides and nitrides in steel increase with the increase of Ti mass percentage. Therefore, Ca treatment and higher Ti content can promote the formation of the inclusions of composite oxide and TiN, and also delay the homogeneous nucleation time of TiN inclusions, reducing its size during solidification process of the steel. TiN with the size about 2-3??m not only can induce polygonal ferrite, but also induce acicular ferrite. Specially, the inclusions with TiN and MnS locally precipitating on the surface of composite oxides are conducive to the nucleation of interlocking acicular ferrites.  相似文献   

8.
Inrecentyears ,thedemandofhigherweldingqualityisincreasingwiththedevelopmentofhighstrengthsteel.Thestrengthandtoughnessofweldmetalsareimportantforuseperformanceofweldingstructure ,especiallyforlowalloyhighstrengthsteelwhosetensilestrengthσb ≥ 10 0 0MPa ,and…  相似文献   

9.
X65管线钢的模拟炉卷轧制工艺研究与组织性能   总被引:3,自引:1,他引:3  
江海涛  康永林  梁正伟 《钢铁》2006,41(4):51-55
对X65管线钢的炉卷轧制工艺进行了实验室模拟研究,并采用光学、电子显微技术和力学分析等方法研究了X65管线钢的微观组织与性能.研究结果表明,通过实验室模拟炉卷轧机的控轧控冷工艺,获到了组织性能优异的X65针状铁素体管线钢.利用相变强化和控轧控冷形成有利的针状铁素体组织,合理控制夹杂物和碳氮析出物的大小、形态和分布是管线钢组织性能控制的关键所在.  相似文献   

10.
E32 grade corrosion resistant steel was welded with welding wires with three different S contents.The mi-crostructure,mechanical properties,inclusions,and corrosion behavior of welded joint were investigated.The joint coupon corrosion test and potentiodynamic polarization test were carried out under the simulated corrosion environ-ment of the inner bottom plates of cargo oil tanks.The pitting initiation and propagation mechanism of the weld metal were studied by scanning electron microscopy and infinite focus.The results indicated that the microstructures of three kinds of weld metals are all composed of acicular ferrite,ferrite side-plate and proeutectoid ferrite.The micro-structure of heat-affected zone is composed predominantly of bainite.Joint welded with low S filler wire has good me-chanical properties.S can decrease free corrosion potential and increase the corrosion tendency.The pitting initiation is oxide inclusion or sulfide-oxide inclusion complex.S can induce the formation of occluded area and promote the corrosion propagation.The chemical compositions of weld metal is similar to base metal,which can limit the galvanic corrosion between weld metal and base metal,and avoid formation of corrosion step.  相似文献   

11.
利用Gleeble-1500热模拟试验机进行焊接热模拟实验,研究16Mn钢经微Ti和Ti-Mg处理后焊接热影响区组织及冲击性能的变化,并利用扫描电镜和能谱分析法观察和分析实验钢的夹杂与冲击断口形貌.Ti和Ti-Mg复合处理试样的热影响区显微组织分别主要是晶界块状铁素体+晶界侧板条铁素体和晶内针状铁素体+晶界块状铁素体.经Ti处理后钢中夹杂物主要为5μm左右的TiOx+MnS复合夹杂,经Ti-Mg复合脱氧后钢中夹杂物主要为2μm左右Ti-Mg-O+MnS组成的复合夹杂,且后者明显细化了钢中夹杂物尺寸.Ti-Mg复合脱氧试样中存在大量细小夹杂颗粒,一方面可钉扎裂纹,另一方面诱导形成了使大量针状铁素体,大焊接热输入条件下Ti-Mg复合脱氧试样热影响区冲击韧性明显强于单独Ti处理的试样.   相似文献   

12.
Abstract

The influence of submerged arc welding (SAW) process parameters on the microstructure of SA516 grade 70 steel weld metal (WM) was investigated in the present work. Steel plates of 17 mm thickness were submerged arc welded using welding currents of 700–850 A and welding speeds of 5·3–15·3 mm s?1. The morphologies and volume fractions of the various ferrites in the WM were studied using optical microscopy and the morphologies and chemical compositions of the WM inclusions were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. The results showed that the WM grain structure coarsened but the grain width of prior austenite grains decreased with increasing heat input. Also, the proportion of acicular ferrite (AF) in the WM increased initially, while the volume fractions of grain boundary ferrite and Widmanstätten ferrite decreased with increasing welding current. However, with further increasing the welding current above 800 A, less AF was produced. The weld nugget area decreased with increasing welding speed at all currents, but did not affect the amount of AF produced.

Au cours de ce travail, on a examiné l’influence des paramètres du procédé de soudage à l’arc sous flux en poudre (SAW) sur la microstructure du métal soudé (WM) de l’acier SA516, Gr. 70. On a soudé à l’arc sous flux en poudre des tôles d’acier de 17 mm d’épaisseur en utilisant des courants de soudage de 700 à 850 A et des vitesses de soudage de 5·3 à 15·3 mm s?1. On a étudié la morphologie ainsi que la fraction volumique des diverses ferrites du WM en utilisant la microscopie optique et l’on a examiné la morphologie ainsi que la composition chimique des inclusions du WM en utilisant la microscopie électronique à balayage (SEM) et la spectroscopie à dispersion d’énergie (EDS). Les résultats ont montré que la structure de grain du WM grossissait mais que la largeur de grain des grains antérieurs d’austénite diminuait avec une augmentation de l’apport de chaleur. Également, la proportion de ferrite aciculaire (AF) dans le WM augmentait initialement, alors que les fractions volumiques de ferrite des joints de grain (GBF) et de ferrite de Widmanstatten (WF) diminuaient avec l’augmentation du courant de soudage. Cependant, avec une augmentation supplémentaire du courant de soudage au-dessus de 800 A, moins de ferrite aciculaire était produite. La région du noyau de soudure diminuait avec une augmentation de la vitesse de soudage à toutes les valeurs de courant, mais la quantité d’AF produite n’était pas affectée.  相似文献   

13.
The Effect of A1 and Ti treatment on non-metallic inclusions and microstructures of coarse-grain HAZ in HSLA stee1 was investigated in this paper based on experiments and thermodynamic calculations.The results showed that the inclusions in A1 treated steel were mainly aluminum oxides and titanium nitrides which could not promote the formation of acicular ferrite microstructures.Microstructure of coarse-grain HAZ in A1 treated steels consists of heavy grain boundary ferrite and ferrite side plate.The inclusions in Ti treated steel were A1,Ti,Mg,Ca composite oxides with size in the range of 0.5-3μm and titanium nitrides with size less than 0.3μm.Ti composite oxide could promote the formation of acicular ferrite and microstructures of coarse-grain HAZ in Ti treated steel consists of grain boundary ferrite,small amounts of ferrite side plate and large amounts of intragranular acicular ferrite.The size of grain boundaries ferrite was increased and the amount of ferrite side plate was decreased with the increase of soaking time at the peak temperature.The amount of grain boundary ferrite and the size of acicular ferrite were also increased with the increase of cooling rate during ferrite phase formation.  相似文献   

14.
The fatigue crack propagation rate (FCPR) in 316L austenitic stainless steel (ASS) and its weldments was investigated, at two loading amplitudes, 7 and 8.5 kN, under tension-tension mode. Two welding techniques, submerged arc welding (SAW) and manual arc welding (MAW), have been used. Magnetic δ-ferrite, depending upon Ni and Cr content in the metal, in the weld zone upon solidification was considered. The ferrite number (FN) of δ-ferrite formed in the SAW zone was much higher (maximum 9.6) compared to the corresponding value (maximum 0.75) in the MAW zone. A fatigue starter notch was positioned at different positions and directions with respect to the weld zone, in addition to the heat-affected zone (HAZ). Regions of high and low FCPRs as the fatigue crack propagated through and across the weld zone have been noticed. This is related to the direction of the tensile residual stresses present in weld zone, resulting from solidification of the weld metal. The FCPR was higher along through the HAZ and weld zone because of the microstructural change and direction and distribution of tensile residual stresses. The FCPR was much lower when crack propagated perpendicular to the weld zone, particularly in the case of SAW in which higher δ-ferrite volume fraction was noticed. A lower FCPR found across the weld zone, in both SAW and MAW, was accompanied by rubbed areas in their fractures.  相似文献   

15.
研究了焊剂碱度对管线钢时弧焊熔敷金属显微组织和韧性的影响。结果表明:随焊剂碱度的提高,焊缝中锰、钛含量产加,而氧、硅含量降低,同时具有有利于针状铁素体形核的夹杂物尺寸和分布,促进了奥氏体晶粒内针状铁素体的形成,提高了熔敷金属的低温冲击韧性。  相似文献   

16.
 Effects of Mg on the chemical component and size distribution of Ti bearing inclusions favored grain refinement of the welding induced coarse grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti O+Ti Mg O compound oxide to the Ti Mg O+MgO compound oxide and the single phase MgO, as the Mg content increased from 0002 3% to 0006%. A trace addition of Mg (approximately 0002%) led to the refinement of Ti bearing inclusions by creating the Ti Mg O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0006%) produced a single phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.  相似文献   

17.
In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.  相似文献   

18.
针状铁素体是一种具有大角度晶界、高位错密度的板条状中温转变组织,该组织能有效细化晶粒并具有良好的强韧性匹配.因此,通常在低合金高强度钢焊缝和粗晶区中,利用细小的夹杂物来诱导针状铁素体形成,形成有效晶粒尺寸细小的针状铁素体联锁组织或者针状铁素体和贝氏体的复合组织,使其具有良好的韧性.然而,相关研究对针状铁素体组织的形成机理和控制原理的解释并不十分清楚,对于针状铁素体的定义和理解也存在差异.总结了针状铁素体的本质、相变、形核、形态、晶体学取向关系、长大行为、细化机理和力学性能等方面的特征,归纳了奥氏体晶粒尺寸、转变温度、冷却速度、夹杂物类型和尺寸等对针状铁素体形成的影响,提出了针状铁素体组织形态和转变机理方面几个仍需深入研究的问题和方向.  相似文献   

19.
采用热模拟技术,EBSD技术和透射电子显微镜对镁处理高钢级管线钢的焊接热影响区(HAZ)晶内铁素体(IGF)的形核现象和机制进行了试验研究。结果表明:镁处理钢中形成大量的Al、Ti、Mg复合氧化物夹杂,其颗粒大小为0.5~3μm。在粗晶热影响区(CGHAZ)中,含Mg复合氧化物具有促进晶内针状铁素体形核的能力。对Mg处理高钢级管线钢焊接热影响区晶内铁素体的形核机制进行了探讨。  相似文献   

20.
Ti、Zr的复合氧化物可以有效诱导针状铁素体形核,从而细化晶粒。为了研究Ti–Zr处理钢中针状铁素体转变机理,使用25 kg真空感应炉中熔炼试验所需钢种,向低合金钢中添加了质量分数为0.038%钛和0.008%锆。利用高温激光共聚焦显微镜原位观察了奥氏体化温度对针状铁素体转变行为的变化,使用扫描电镜观察了Ti–Zr处理钢种的夹杂物成分和针状铁素体在夹杂物表面形核,使用光学显微镜观察不同奥氏体化温度下的微观组织变化差异。结果表明,随着奥氏体化温度从1250 ℃增加至1400 ℃,奥氏体晶粒尺寸从125.6 μm 增加至279.8 μm,针状铁素体开始转变温度和侧板条铁素体开始转变温度先增加,在1350 ℃条件下达到最大值,后又降低,针状铁素体的体积分数由39.6%增加至83.6%;Ti–Zr处理钢中核心为Zr–Ti–O,外部为Al–Ti–Zr–O的氧化物为核心表面析出MnS的复合氧化物主要集中在1.5~3 μm,可以有效促进针状铁素体形核,贫Mn区和夹杂物与铁素体之间的良好晶格关系为该型夹杂物能够促进针状铁素体形核机理。奥氏体晶粒尺寸的增加导致多边形铁素形核位点的减少和针状铁素体的形核空间的增加,钛锆复合处理形成大量的有效诱发针状铁素体形核的夹杂物,这共同导致了针状铁素体体积分数增加。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号