首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 859 毫秒
1.
利用Gleeble-3800热模拟试验机对试验钢在950~1100 ℃,应变速率为0.1~5.0 s-1,最大应变量为60%的条件下进行了热压缩模拟试验。结果表明:高变形温度、低应变速率和大变形量有利于动态再结晶,试验在1050 ℃、变形量60%、变形速率1 s-1条件下得到圆整均匀再结晶晶粒,平均晶粒尺寸为14.84 μm;推演出低碳Ti-Mo微合金马氏体钢的形变激活能为462.8 kJ/mol及Z参数与动态再结晶变形条件的关系;建立起试验钢动态再结晶临界应变公式εc=0.3729Z0.3496。  相似文献   

2.
为了探究0.30C-Cr-W渗氮轴承钢的最佳动态再结晶条件和热变形机理,利用Gleeble3800热模拟试验机对试验钢进行了等温热压缩模拟试验,试验变形温度为750~1050 ℃,应变速率0.01~10 s-1,变形量60%。结果表明,峰值应力随变形温度的降低和应变速率的升高而增大,在应变速率为0.01∼0.1 s-1,变形温度为950~1050 ℃时,发生明显动态再结晶;具有双曲正弦函数型的本构方程能较好地描述0.30C-Cr-W渗氮轴承钢的流变行为;0.30C-Cr-W渗氮轴承钢的形变激活能为442.022 kJ/mol。基于动态材料模型和流变应力数据建立了热加工图。通过热加工图及微观组织的观察确定了变形温度950∼1050 ℃,应变速率0.01∼0.15 s-1为最佳热变形条件;变形温度750∼950 ℃,应变速率1.2∼10 s-1为流变失稳区。  相似文献   

3.
为研究微合金元素Nb对高碳合金钢动态再结晶行为的影响,利用Gleeble-3500热模拟试验机进行单道次压缩试验,测定了高碳合金钢在变形温度为950~1150 ℃、应变速率为0.01~5 s-1的流变应力曲线,利用Zeiss光学显微镜观察了奥氏体动态再结晶晶粒形态,通过回归计算获得了相应的再结晶激活能,建立了热变形方程。结果表明:较高的变形温度和较低的应变速率有利于含铌高碳合金钢发生动态再结晶;含铌高碳合金钢的动态再结晶晶粒尺寸随着变形温度的升高而增大,当变形温度为1050 ℃时,含铌高碳合金钢已大量出现动态再结晶晶粒;0.040%铌加入到高碳合金钢中,在应变速率为0.1 s-1,变形温度为1150 ℃时推迟了钢的动态再结晶开始时间约2.23 s,动态再结晶形变激活能增加了52.26 kJ/mol。  相似文献   

4.
为了获得00Cr12Ni11Mo1Ti2高强度不锈钢热加工图,优化其热加工工艺参数,采用Gleeble-3800型热模拟试验机,在变形温度为850~1150℃,应变速率为0.01~10 s-1的条件下对试验钢进行了热压缩试验,研究了其热变形行为。构建了试验钢在峰值流变应力下的本构方程,并且基于动态材料模型构建了能量耗散图,并分别采用Prasad和Murthy两种失稳判据构建了试验钢的塑性失稳图。结果表明:00Cr12Ni11Mo1Ti2钢在能量耗散率低于0.3的变形区间内同样可以发生动态再结晶,在应变速率为1.0~10 s-1,变形温度为850~1000℃的区间内,试验钢仅发生了部分动态再结晶且伴有大量的局部变形带产生,与Murthy准则预测的塑性失稳区更加吻合;在变形温度为1050~1150℃,应变速率为0.01~10.0 s-1的区间内试验钢具有最佳的热加工性能,可获得细小均匀的原奥氏体晶粒组织。  相似文献   

5.
采用Gleeble3800热模拟试验机对16Cr超级马氏体不锈钢进行高温热压缩试验,测得其高温流变应力曲线。通过双曲正弦模型构建了试验钢的热变形本构方程,获得了该钢的热变形表观激活能Q为533.018 k J/mol。根据材料动态模型绘制试验钢热加工图,结合高温变形后显微组织,确定可行热加工工艺参数:变形温度为925~1025℃,应变速率为0.01~0.1 s~(-1);变形温度为1050~1100℃,应变速率为0.1~10 s~(-1)。此时试验钢组织发生了完全动态再结晶,晶粒明显细化,且对应的能量耗散效率较高。  相似文献   

6.
利用Gleeble-3800热模拟试验机得到17Cr2Ni2MoVNb和20Cr2Ni4A齿轮钢在1000~1150 ℃、0.01~10 s-1的流变应力曲线,构建了两种钢的动态再结晶Avrami动力学模型和热加工图。结果表明,两种钢在高变形温度、低应变速率下易发生动态再结晶。17Cr2Ni2MoVNb钢中较高的Nb和Mo含量对动态再结晶的抑制作用大于20Cr2Ni4A钢中的高Ni含量的影响,导致在相同的热变形条件下17Cr2Ni2MoVNb钢的动态再结晶体积分数小于20Cr2Ni4A钢。17Cr2Ni2MoVNb钢的最佳热加工工艺参数为:温度为1050~1150 ℃、应变速率为0.1~0.6 s-1;20Cr2Ni4A钢的最佳加工参数为:温度为1100~1150 ℃、应变速率为3.3~5.5 s-1。  相似文献   

7.
通过对2209双相不锈钢进行热压缩试验,分析不同变形温度及变形速率对应力应变曲线的影响,构建2209双相不锈钢的本构方程及热加工图,分析得出温度1 060~1 120℃、应变率0.35~0.39 s-1以及温度1 120~1 200℃、应变率0.42~0.46 s-1适合进行加工。对2209双相不锈钢在0.1 s-1应变速率,950℃和1 150℃两种条件下的热压缩试样进行EBSD测试,获得了对应的再结晶晶粒,亚结构和变形晶粒比例,分析了材料的软化机制,进一步验证了热加工图的准确性。  相似文献   

8.
利用Gleeble-3500热模拟试验机对18CrNiMo7-6齿轮钢进行了等温单道次压缩试验,研究了变形温度为900~1150℃,应变速率为0.01~5 s-1,应变为0.76的条件下材料的热变形行为;并且通过光学显微镜对热变形后的微观组织进行了分析。建立了唯象型Arrhenius本构方程,预测的峰值应力与试验数据具有很好的一致性。高温热变形过程是加工硬化与动态回复以及动态再结晶的竞争过程,在热变形的过程中会形成变形晶粒、再结晶晶粒、等轴晶和晶粒长大等4种类型的微观组织。当应变速率为0.01 s-1时,动态再结晶程度与变形温度成正比,当变形温度超过1050℃时,变形能转变成晶粒长大的驱动能,使得晶粒粗大;当应变温度一定(1050℃)时,随着应变速率的增大,动态再结晶发生不完全,导致晶粒组织出现细化、畸变、不完全再结晶共存的现象。变形程度越大,晶粒越细小。  相似文献   

9.
根据Gleeble-3500热模拟试验机测量30CrNi3MoV钢的真应力-真应变曲线,系统研究了应变速率为0.01、0.1 s-1时钢材的动态再结晶行为,并构建了其动态再结晶模型。结果表明:30CrNi3MoV钢在高温小应变速率下更容易发生动态再结晶,其热变形激活能为328.2 kJ/mol;通过加工硬化率随流变应力变化曲线(θ-σ)的拐点确定临界应变,可得动态再结晶临界应变方程为εc=0.001 22Z0.175;构建的动态再结晶体积分数及其平均晶粒尺寸模型能够较好地预测试验钢的动态再结晶体积分数及其晶粒尺寸;当应变速率为0.1 s-1、变形温度为1050 ℃时,试验钢的晶粒最细小、均匀,平均晶粒尺寸约为19.9 μm。  相似文献   

10.
用Gleeble 3180热模拟试验机对022Cr钢的热变形行为进行研究,揭示了变形抗力与变形程度、变形温度和应变速率的关系。在950~1200 ℃温度范围和应变速率为0.001~5 s-1下进行热压缩,并利用动态材料模型(DMM)建立了022Cr钢热变形的工艺图。结果表明,随着变形温度的升高和应变速率的降低,022Cr钢的流动应力降低。根据流动应力曲线数据计算其变形激活能为381.615 kJ/mol。当应变不小于0.5时,022Cr钢热加工的最佳变形条件有两个区域,第一个区域在温度范围1100~1200 ℃,应变速率范围0.001~0.01 s-1内,第二个区域在温度范围1130~1180 ℃,应变速率范围1~5 s-1内,其功耗效率都能达到0.4以上。  相似文献   

11.
王帅  赵阳  邵国华  陈礼清 《轧钢》2021,38(6):42-47
利用MMS-200热模拟试验机对一种中碳高硅弹簧钢进行了单道次热压缩试验,研究了该钢在变形温度为900~1 100 ℃及应变速率为0.1~10 s-1条件下的热变形行为,建立了应变补偿的Arrhenius流变应力预测模型。结果表明,应变速率和变形温度对该弹簧钢的奥氏体动态再结晶过程有显著影响。当变形速率为0.1、5、10 s-1时,在所有变形温度下均发生奥氏体动态再结晶;当变形速率为1 s-1且变形温度超过950 ℃时,奥氏体发生动态再结晶,其热变形激活能为445.5 kJ/mol。通过对真应力的预测值与试验值的对比,得出应变补偿Arrhenius模型具有准确性和预测性,其相关系数为0.976,平均相对误差为4.73%。  相似文献   

12.
利用蔡司显微镜和Nano Measurer金相分析软件,研究了不同加热温度下新能源汽车用高Nb-Ti无取向硅钢显微组织的演变规律,并利用ICP-MS对不同加热温度下Nb、Ti的固溶量进行检测分析;然后采用热模拟方法研究了热轧过程中试验钢的再结晶行为。结果表明:随着加热温度升高,试验钢的晶粒尺寸增加明显,而Nb、Ti的固溶量仅略有增加。当加热温度为1230 ℃、变形温度分别为1100、1050、1000 ℃时,在应变速率0.1 s-1、变形量30%和应变速率1 s-1、变形量80%的条件下单道次压缩后的试验钢均未发生动态再结晶行为,而在应变速率为1 s-1、变形量为40%的条件下,在1100 ℃及1050 ℃单道次压缩后再保温30 s以上时有静态再结晶行为发生,显微组织大部分为等轴晶粒,但是在1000 ℃变形单道次压缩后再保温50 s的显微组织仍以未再结晶的长条晶粒为主。  相似文献   

13.
为了探究真空感应+真空自耗(VIM+VAR)和电炉+精炼+真空自耗(EAF+LF+VAR)两种工艺冶炼A286高温合金的热变形行为,利用Gleeble-3800热模拟试验机在温度950~1150 ℃和应变速率0.01~10 s-1范围内进行热压缩试验。基于摩擦和绝热加热修正后的真应力-真应变曲线和应变硬化率曲线建立了A286合金的Arrhenius本构方程,确定了VIM+VAR合金和EAF+LF+VAR合金的热激活能分别为358.15和372.54 kJ·mol-1。利用临界应变和动态再结晶体积分数50%应变引入动态再结晶速度参数kv,建立新的动态再结晶模型。采用Prasad 准则绘制两种钢在应变0.2、0.5和0.9下的热加工图,并结合组织分析,确定VIM+VAR合金的最佳热加工工艺条件为1050~1100 ℃,0.01~1 s-1和1100~1150 ℃,0.1~10 s-1;EAF+LF+VAR合金的最佳热加工工艺条件为1050~1100 ℃,0.01~1 s-1和1100~1150 ℃,0.1~3 s-1,得出VIM+VAR合金的热加工区间较宽,其热加工性能优于EAF+LF+VAR合金。  相似文献   

14.
伦建伟  刘伟  杨洋  郭诚 《锻压技术》2021,46(3):216-220
为了研究35CrMoV钢的高温变形行为,借助Gleelble 3800型热模拟试验机,在应变速率为0.01~10 s-1、变形温度为950~1150℃的条件下进行轴向单道次高温压缩试验,并根据试验结果绘制35CrMoV钢的流动应力-应变曲线。分析研究了变形温度、应变速率对流动应力的影响,计算了变形激活能Q及参数n、A、α的取值。试验结果表明:35CrMoV钢在950~1150℃进行压缩试验时,存在动态再结晶和动态回复两种流动应力-应变关系,当应变速率为0.01和0.1 s-1时,其流动应力-应变曲线主要表现为动态再结晶型;当应变速率为1和10 s-1时,其流动应力-应变曲线主要表现为动态回复型。在试验条件下获得35CrMoV钢的平均变形激活能Q为310.433 kJ·mol-1,建立了用于描述35CrMoV钢流动应力、应变速率和变形温度三者之间关系的本构方程。  相似文献   

15.
The hot deformation behavior of a medium-Mn steel was studied in terms of hot compression flow curves in the temperature range of 850–1050 ℃ and strain rates of 0.05–10 s~(-1).The thermo-mechanical analysis was carried out and suggested that the microstructure during deformation was completely austenite which had high tendency for dynamic recrystallization(DRX).The flow behavior was characterized by significant flow softening at deformation temperatures of 950–1050 ℃ and lower strain rates of 0.05–5 s~(-1), which was attributed to heating during deformation, DRX and flow instability.A step-by-step calculating procedure for constitutive equations is proposed.The verification of the modified equations indicated that the developed constitutive models could accurately describe the flow softening behavior of studied steel.Additionally, according to the processing maps and microstructure analysis, it suggested that hot working of medium Mn steel should be carried out at 1050 ℃, and the strain rate of 0.05–10 s~(-1) resulted in significantly recrystallized microstructures in the in steel.The flow localization is mainly flow instability mechanism for experimental steel.  相似文献   

16.
通过单道次、双道次压缩试验,研究了低Ni型LNG钢的高温奥氏体动态再结晶及静态再结晶行为,并采用两阶段控制轧制及超快速冷却技术进行不同轧制工艺下的热轧试验,通过热模拟及热轧试验研究了低Ni型LNG钢的热变形行为及力学性能。结果表明,在高温(1000~1050 ℃)、低应变速率(0.1~0.5 s-1)下奥氏体容易发生动态再结晶,确定了发生再结晶的临界条件,并建立了动态再结晶动力学模型。试验钢在较高温度(800~1050 ℃)、较长道次间隔时间(60 s)下静态软化现象明显,容易发生静态再结晶。依据热模拟试验结果制定热轧试验工艺,通过控制精轧开轧温度和终轧温度调控高温奥氏体再结晶行为,从而细化晶粒,改善低Ni钢的冲击性能。精轧开轧温度920 ℃、终轧温度770 ℃时,低Ni钢的低温冲击吸收能量为180.1 J,屈服强度为595.1 MPa,抗拉强度为717.8 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号