共查询到20条相似文献,搜索用时 15 毫秒
1.
A database on geothermal fluids in Switzerland, called BDFGeotherm, has been compiled. It consists of nine related tables with fields describing the geographical, geological, hydrogeological and geothermal conditions of each sampling location. In all, 203 springs and boreholes from 82 geothermal sites in Switzerland and neighboring regions are listed in this new interactive Microsoft Access database. BDFGeotherm is a functional tool for various phases of a geothermal project such as exploration, production or fluid re-injection. Many types of queries can be run, using any fields from the database, and the results can be put into tables and printed or exported and saved in other files. In addition to describing the database structure, this paper also gives a summary of the reservoir formations, the geographical distribution of hydraulic parameters, the geochemical types of thermal waters and the potential geothermal resources associated with the sites. 相似文献
2.
In this work we make a first, partial, assessment of the low- to medium-temperature geothermal reserves of Mexico. The assessment covers about 30% of the identified geothermal surface manifestations. For reserve assessment we use the volume method, supplemented by Montecarlo simulations and statistics, in order to quantify the inherent uncertainties. We estimate these reserves as lying between 7.7 × 1016 and 8.6 × 1016 kJ, with 90% confidence. The distribution of most likely reservoir temperatures is in the 60–180 °C range, with a mean of 111 °C. These massive amounts of recoverable energy and the associated temperatures are potentially important for the economic development of the associated geothermal localities. 相似文献
3.
Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization 总被引:1,自引:0,他引:1
Thermal waters from Quaternary volcanic rocks (predominantly andesites) discharge along faults in the Obama geothermal field of southwestern Japan. The chemistry of more than 100 thermal and ground water samples collected between 1936 and 2005 indicate that the Na–Cl hot spring waters are a mixture of “andesitic” magmatic, sea and meteoric waters. Mixing models and silica and cation geothermometry were used to estimate the SiO2 and Cl composition and the temperature (∼200 °C) of the reservoir fluids deep in the geothermal system. The isotopic data (18O and D) are consistent with a mixed origin interpretation of the waters feeding the Obama hot springs, i.e. a large proportion of meteoric and sea waters, and a small magmatic component. Temperatures and chemical concentrations of the thermal waters were affected by the 1944–1959 salt production operations, but have recovered after closure of the salt factories; now they are similar to their pre-1940 values. In the future, the Obama geothermal field may be suitable for electric power generation, although heat and fluid extraction will require careful management to prevent or minimize reservoir cooling. 相似文献
4.
The thermoluminescence glow-curve of quartz in volcanic and pyroclastic rocks of the Miocene and Quaternary in the Kakkonda geothermal field was divided into L (low), M (medium) and H (high) peaks in order of increasing temperature. Thermoluminescence emission is independent of stratigraphic boundaries but it is closely related to surface geothermal manifestations. Thermally stimulated processes of thermoluminescence caused by natural annealing occurred in the Quaternary after the eruption of the Tamagawa Welded Tuffs; radiation storage processes then began, as a consequence of the temperature drop. Thermoluminescence behavior indicates natural temperature manifestations, together with the paleo-temperature history.The H peak was thermally stable compared to the L and M peaks, and the area within which the relative intensity of the H peak is less than 5% coincides with the surface zone where dominant fluid flow is convective. In addition, L and M peaks indicate that a relatively low-temperature fluid mixes with the hot upflow around the western margin of the ascending flow zone.Thermoluminescence characteristics reflect paleo-temperature history and are related to geothermal fluid flow. Thermoluminescence is an effective exploration technique for evaluating natural temperature manifestations and subterranean heat flow in geothermal systems. 相似文献
5.
Roberto Cadenas 《Geothermics》1999,28(3):116
More than 500 t/h of residual steam are discharged into the atmosphere at Los Azufres geothermal field. Steam comes from nine back-pressure turbines that are at present generating 45 MW. A significant increase in output can be obtained if low pressure turbines are installed to expand residual steam from atmospheric pressure up to a vacuum pressure in condensing cycles. A net output optimization process for each unit in the condensing cycle is presented here. The exergy concept is also applied to compare efficiencies of back pressure cycles with new condensing schemes that include low pressure turbines. Results show that 27.8 MW of additional net output can be generated with the new schemes at competitive production costs and higher conversion efficiencies. 相似文献
6.
Víctor Manuel Arellano Rosa María Barragán Alfonso Aragón Marco Helio Rodríguez Alfredo Pérez 《Geothermics》2011,40(3):190-198
The Cerro Prieto IV (CP IV) reservoir, located in the northeastern part of the Cerro Prieto (Mexico) geothermal field, was studied in order to define its pre-exploitation conditions and initial (2000–2005) response to exploitation. Bottomhole thermodynamic conditions were estimated by modeling heat and fluid flows using the WELLSIM program and well production data. Produced fluid chemical and isotopic data were also analyzed to investigate characteristic patterns of behavior over time, which were then compared against simulation results to obtain a conceptual model of the CP IV reservoir. According to the proposed model, two zones in the reservoir – separated by Fault H and producing fluids of different characteristics – were identified under pre-exploitation conditions. Wells in the area to the east-southeast (south block) produce very high-enthalpy fluids (≥2000 kJ/kg), with very low chloride (≤7000 mg/kg) and high CO2 (>6‰ molar) and δD (<−94‰). In contrast, wells toward the west-northwest (north block) show moderate-enthalpy fluids (1400–1800 kJ/kg), with high chloride (∼12,000 mg/kg) and relatively low CO2 (<6‰ molar) and δD (<−94‰). Dilution caused by cooler water entry, boiling due to steam gain, both occurring in the north block, and steam condensation in the south block were identified as the three main reservoir processes associated with exploitation. Also, it was found that the dynamics of the CP IV reservoir is controlled by the Fault H system. 相似文献
7.
Heat exchanger optimization for geothermal district heating systems: A fuel saving approach 总被引:2,自引:0,他引:2
One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered. 相似文献
8.
Hyperspectral data analysis has been applied to the mapping of soil anomalies that may be related to present or past geothermal systems. Anomalous accumulations of certain soil minerals can indicate buried geologic structures and possible zones of elevated permeability. Hyperspectral data can be used to map these anomalies as part of geothermal exploration activities. The study area for this project was northern Dixie Valley, Nevada, which is host to a structurally-controlled deep-circulation hydrothermal convection system. Advanced visible and Infrared Imaging Spectrometer (AVIRIS) airborne hyperspectral imagery was used. Both supervised and unsupervised spectral unmixing methods were tested to separate minerals from other components in the image. Both methods produced useful spectral end-members leading to the detection of anomalous soil minerals that may be related to the geothermal system and buried geologic structures. 相似文献
9.
In this paper, we introduce analytical solutions for transient heat conduction in an infinite solid mass subjected to a varying single or multiple cylindrical heat sources. The solutions are formulated for two types of boundary conditions: a time-dependent Neumann boundary condition, and a time-dependent Dirichlet boundary condition. We solve the initial and boundary value problem for a single heat source using the modified Bessel function, for the spatial domain, and the fast Fourier transform, for the temporal domain. For multiple heat sources, we apply directly the superposition principle for the Neumann boundary condition, but for the Dirichlet boundary condition, we conduct an analytical coupling, which allows for the exact thermal interaction between all involved heat sources. The heat sources can exhibit different time-dependent signals, and can have any distribution in space. The solutions are verified against the analytical solution given by Carslaw and Jaeger for a constant Neumann boundary condition, and the finite element solution for both types of boundary conditions. Compared to these two solutions, the proposed solutions are exact at all radial distances, highly elegant, robust and easy to implement. 相似文献
10.
Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies on neighbouring areas as an electricity buffer though. 相似文献
11.
This paper describes a new computer program, which was written for the prediction and analysis of human thermal comfort. The program incorporates six thermal comfort indices; three original and three modified versions of the original. The original indices are; Fanger's Comfort Equation, Sharma's Tropical Summer Index and Madsen's Equivalent temperature. Results produced by the program are presented in terms of the same PMV scale (Predicted Mean Vote). The six indices are, however, classified as three for summer and three for winter. 相似文献
12.
In present work, the basic, dual-pressure and dual-fluid ORCs and Kalina cycle for power generation from the geothermal fluid reservoir are compared from energy, exergy and exergoeconomic viewpoints. To do so, first thermodynamic models are applied to the considered cycles; then by developing cost flow rate balance and auxiliary equations using SPECO method for all components, the cost flow rate and unit cost of exergy for each stream are calculated. The results show that the turbine in basic and Kalina cycles and low pressure turbine in dual-pressure and dual-fluid ORCs have the maximum value of sum of total cost rate associated with exergy destruction and total capital investment cost rate. Thus, more attention should be paid for these components from the exergoeconomic viewpoint. The cycles are optimized to obtain maximum produced electrical power in the cycles as well as minimum unit cost of produced power. The optimization results show that among the considered cycles, dual-pressure ORC has the maximum value of produced electrical power. This is 15.22%, 35.09% and 43.48% more than the corresponding values for the basic ORC, dual-fluid ORC and Kalina cycle, respectively in optimal condition. Also Kalina cycle has the minimum value of unit cost of power produced and its value in optimum state is 26.23%%, 52.09% and 66.74% less than the corresponding values for the basic ORC, dual-pressure ORC and dual-fluid ORC, respectively in optimal condition. Finally a parametric study is carried out to assess the effects on thermodynamic and exergoeconomic parameters of the considered cycles of operating pressures and ammonia mass concentration. 相似文献
13.
The proposed Den Haag Zuidwest district heating system of the city of The Hague consists of a deep doublet in a Jurassic sandstone layer that is designed for a production temperature of 75 °C and a reinjection temperature of 40 °C at a flow rate of 150 m3 h−1. The prediction of reservoir temperature and production behavior is crucial for success of the proposed geothermal doublet. This work presents the results of a study of the important geothermal and geohydrological issues for the doublet design. In the first phase of the study, the influences of the three-dimensional (3D) structures of anticlines and synclines on the temperature field were examined. A comprehensive petrophysical investigation was performed to build a large scale 3D-model of the reservoir. Several bottomhole temperatures (BHTs), as well as petrophysical logs were used to calibrate the model using thermal conductivity measurements on 50 samples from boreholes in different lithological units in the study area. Profiles and cross sections extracted from the calculated temperature field were used to study the temperature in the surrounding areas of the planned doublet. In the second phase of the project, a detailed 3D numerical reservoir model was set up, with the aim of predicting the evolution of the producer and injector temperatures, and the extent of the cooled area around the injector. The temperature model from the first phase provided the boundary conditions for the reservoir model. Hydraulic parameters for the target horizons, such as porosity and permeability, were taken from data available from the nearby exploration wells. The simulation results are encouraging as no significant thermal breakthrough is predicted. For the originally planned location of the producer, the extracted water temperature is predicted to be around 79 °C, with an almost negligible cooling in the first 50 years of production. When the producer is located shallower parts of the reservoir, the yield water temperatures is lower, starting at ≈76 °C and decreasing to ≈74 °C after 50 years of operation. This comparatively larger decrease in temperature with time is caused by the structural feature of the reservoir, namely a higher dip causes the cooler water to easily move downward. In view of the poor reservoir data, the reservoir simulation model is constructed to allow iterative updates using data assimilation during planned drilling, testing, and production phases. Measurements during an 8 h pumping test carried out in late 2010 suggest that a flow rate of 150 m3 h−1 is achievable. Fluid temperatures of 76.5 °C were measured, which is very close to the predicted value. 相似文献
14.
Water injection in enhanced geothermal systems sets in motion coupled poro-thermo-chemo-mechanical processes that impact the reservoir dynamics and productivity. The variation of injectivity with time and the phenomenon of induced seismicity can be attributed to the interactions between these processes. In this paper, a three-dimensional transient numerical model is developed and used to simulate fluid injection into geothermal reservoirs. The approach couples fracture flow and heat transport to thermo-poroelastic deformation of the rock matrix via the displacement discontinuity (DD) method. The use of the boundary integral equations, for the pressure diffusion and heat conduction in the rock matrix, eliminates the need to discretize the infinite reservoir domain. The system of linear algebraic equations for the unknown displacement discontinuities, and fluid and heat sources are used in a finite element formulation for the fluid flow and heat transport in the fracture. This yields a system of equations which are solved to obtain the temperature, pressure, and aperture distributions within the fracture at every time step. In this way, the temporal variation of the fracture aperture and fluid pressure, caused by pressurization and thermo-poroelastic stresses, are determined. Numerical experiments using the model illustrate the feed-back between matrix dilation, shrinkage, and pressure in the fracture. It is observed that whereas the poroelastic effects dominate the early stage of injection pressure profile and the fracture aperture evolution, thermoelastic effects become dominant for large injection times. 相似文献
15.
Hacene Mahmoudi Nawel Spahis Mattheus F. Goosen Noreddine Ghaffour Nadjib Drouiche Abdellah Ouagued 《Renewable & Sustainable Energy Reviews》2010,14(1):512-517
The aim of this paper was to outline a proposed a new brackish water greenhouse desalination unit powered by geothermal energy for the development of arid and relatively cold regions, using Algeria as a case study. Countries which have abundant sea/brackish water resources and good geothermal conditions are ideal candidates for producing fresh water from sea/brackish water. The establishment of human habitats in these arid areas strongly depends on availability of fresh water. The main advantage of using geothermal energy to power brackish water greenhouse desalination units is that this renewable energy source can provide power 24 h a day. This resource is generally invariant with less intermittence problems compared to other renewable resources such as solar or wind energy. Geothermal resources can both be used to heat the greenhouses and to provide fresh water needed for irrigation of the crops cultivated inside the greenhouses. A review of the geothermal potential in the case study country is also outlined. 相似文献
16.
Tapping for geothermal energy very often requires deep drilling in order to access high-temperature resources. This type of drilling is expensive and is financed by the operator with a long period of debt service before costs can be recovered from the energy sale (heat, electricity or a combination of both). Drilling costs are only a part of the total well expenditure. Tubulars can double the total well cost, especially when complex well completions are required. Together, drilling and well completions can account for more than half of the capital cost for a geothermal power project. A comparison is made of the different completions used for oil, gas and geothermal wells, and geothermal well completion requirements are discussed. Special attention is given to the thermal stresses induced by temperature variations in the casing string of a geothermal well. When the induced thermal stresses exceed the yield strength of the casing material, the fatigue behavior of the latter can be defined as low-cycle fatigue (LCF). The connection threads in the casing body amplify the local stresses and lower the LCF resistance. A theoretical approach is presented to evaluate that parameter, and calculations are compared with preliminary results from experiments on large-diameter Buttress connections, which are commonly used in geothermal well completions. It is shown that under extreme loads the LCF resistance of the Buttress thread connection can be as low as 10 cycles. 相似文献
17.
Seyed Mojtaba Alirahmi Ehsanolah Assareh Ata Chitsaz Shahriyar Ghazanfari Holagh Saeid Jalilinasrabady 《International Journal of Hydrogen Energy》2021,46(50):25650-25665
This study provides comprehensive energy, exergy, and economic evaluations and optimizations of a novel integrated fuel cell/geothermal-based energy system simultaneously generating cooling and electricity. The system is empowered by geothermal energy and the electricity is mainly produced by a dual organic cycle. A proton exchange membrane electrolyzer is employed to generate the oxygen and hydrogen consumed by a proton exchange membrane fuel cell utilized to support the network during consumption peak periods. This fuel cell can be also used for supplying the electricity demanded by the network to satisfy the loads at different times. All the simulations are conducted using Engineering Equation Solver software. To optimize the system, a multi-objective optimization method based on genetic algorithm is applied in MATLAB software. The objective functions are minimized cost rate and maximized exergy efficiency. The optimum values of exergy efficiency and cost rate are found to be 62.19% and 18.55$/h, respectively. Additionally, the results reveal that combining a fuel cell and an electrolyzer can be an effective solution when it comes to electricity consumption management during peak load and low load periods. 相似文献
18.
The scope for diffusion of very low-enthalpy geothermal plants in the Piemonte region of Italy, using groundwater heat pumps (GWHP), was analyzed to check environmental sustainability and the benefits in terms of reducing greenhouse gas emissions from fossil fuels. GWHP implementation seemed particularly suitable to the specific characteristics of the Piemonte plain. An important thick and productive shallow aquifer is present across the entire plain beneath the major energy users and is therefore appropriate for geothermal energy development purposes. The building stock could be adapted to heat pumps in different ways, but objective-oriented policies will be required to reach the best results in terms of environmental benefits. 相似文献
19.
介绍了可视化程序设计比目前常用方法的优点 ,讨论了可视化程序设计在塔里木河流域水盐平衡中应用的具体问题 相似文献
20.
We studied fracture-controlled geothermal fields in the Hreppar Rift-Jump Block (HRJB), a micro-plate bounded by two NNE rifts and the E–W transform zone of the South Iceland Seismic Zone (SISZ). Distinguishing whether the extensional rift swarm or the transform zone shear fractures host the geothermal activity is challenging. GPS mapping of 208 springs and tectonic analysis indicate that six Riedel shear fracture sets of an older transform zone in the HRJB are permeable. Northerly dextral strike-slip faults are the principal permeable faults, although the highest discharge and temperature are found at their intersections with other fracture sets. Two northerly faults from the HRJB connect to the source faults of the major 1784 and 1896 earthquakes within the active SISZ. The 1784 earthquake caused pressure changes as far north as the studied springs, indicating that earthquakes keep faults permeable over hundreds of years. 相似文献