首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban development has an important influence on the energy consumption of transportation. To develop public transportation is one of the important ways to decrease the energy consumption of urban transportation. It is very urgent to upgrade technology to reduce the energy consumption and emissions of the vehicles constantly. The popularization of hydrogen fuel cell vehicles is the trend of the future automobile industry, which can effectively reduce traffic energy consumption and alleviate urban pollution. This article analyzes the impact of urban development on public transport and private transportation energy consumption from 2013 to 2015; and uses hydrogen fuel cell vehicles alternatives in urban public transport as a scenario. It shows that urban economic development can effectively reduce public transport. Population growth will increase greatly energy consumption of public transport, while larger cities with reasonable spatial density can reduce traffic energy consumption. Moreover, hydrogen fuel cell vehicles can effectively reduce the energy consumption and pollution emissions of urban transportation during operating. Based on the above conclusions, this article will eventually provide targeted recommendations for the development of Chinese cities, public transport, and hydrogen fuel cell vehicles.  相似文献   

2.
Early forecasts for hydrogen's role in transport usually proved over-optimistic, with several seeing hydrogen as an important transport fuel by year 2010 or even much earlier. Over the past century, vehicular passenger transport has experienced hypergrowth in terms of task, energy use and greenhouse gas emissions. For a variety of reasons, future decades may well see a significantly reduced global passenger transport task, as well as a widespread phasing-out of internal combustion engine vehicles, especially in cities. In contrast, the global freight transport task is unlikely to decline much, and could even grow, so that freight transport will dominate total transport energy use. Even if the world does finally respond seriously to climate change, likely policies will not favour hydrogen for private passenger vehicles for many decades. Nevertheless, hydrogen has clear superiority over electric vehicles for heavy freight transport. Given this advantage, it may be desirable to promote hydrogen for freight well before large amounts of renewable hydrogen are available from surplus intermittent renewable energy electricity.  相似文献   

3.
A measure of the efficiency in transforming energy input into transport work is defined and applied to road vehicles as well as to sea, air and rail vehicles for passenger or freight transportation. The insight obtained with this measure is compared with the results of applying the conventional measure of kilometres per unit of energy for current fleets of vehicles. Then, simulation methods are used to assess the performance of fuel cell vehicles, electric vehicles and hybrids between the two. The latter are found to provide an optimum performance for a small, efficient passenger car.  相似文献   

4.
Energy efficiency is widely viewed as an important element of energy and environmental policy. Applying the TIMES model, this paper examines the impacts of additional efficiency improvement measures (as prescribed by the ACROPOLIS project) over the baseline, at the level of individual sectors level as well as in a combined implementation, on the German energy system in terms of energy savings, technological development, emissions and costs. Implementing efficiency measures in all sectors together, CO2 reduction is possible through substitution of conventional gas or oil boilers by condensing gas boilers especially in single family houses, shifting from petrol to diesel vehicles in private transport, increased use of electric vehicles, gas combined cycle power plants and CHP (combined heat and power production) etc. At a sectoral level, the residential sector offers double benefits of CO2 reduction and cost savings. In the transport sector, on the other hand, CO2 reduction is the most expensive, using bio-fuels and methanol to achieve the efficiency targets.  相似文献   

5.
Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The ‘Best Case’ scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the ‘Best Case’ scenario and the relative reduction potentials of each measure have been estimated.  相似文献   

6.
New Zealand transport accounts for over 40% of the carbon emissions with private cars accounting for 25%. In the Ministry of Economic Development's recently released “New Zealand Energy Strategy to 2050”, it proposed the wide scale deployment of electric vehicles as a means of reducing carbon emissions from transport. However, New Zealand's lack of public transport infrastructure and its subsequent reliance on private car use for longer journeys could mean that many existing battery electric vehicles (BEVs) will not have the performance to replace conventionally fuelled cars.As such, this paper discusses the potential for BEVs in New Zealand, with particular reference to the development of the University of Waikato's long-range UltraCommuter BEV. It is shown that to achieve a long range at higher speeds, BEVs should be designed specifically rather than retrofitting existing vehicles to electric. Furthermore, the electrical energy supply for a mixed fleet of 2 million BEVs is discussed and conservatively calculated, along with the number of wind turbines to achieve this. The results show that approximately 1350 MW of wind turbines would be needed to supply the mixed fleet of 2 million BEVs, or 54% of the energy produced from NZ's planned and installed wind farms.  相似文献   

7.
Energy demand and emissions from road transportation vehicles in China   总被引:3,自引:0,他引:3  
Rapidly growing energy demand and emissions from China's road transportation vehicles in the last two decades have raised concerns over oil security, urban air pollution and global warming. This rapid growth will be likely to continue in the next two to three decades as the vehicle ownership level in China is still very low. The current status of China's road transport sector in terms of vehicles, infrastructure, energy use and emissions is presented. Mitigation measures implemented and those that can reasonably be expected to be adopted in the near future are analysed. Recent studies exploring the future trends of road vehicle energy demand and emissions under various strategies are reviewed. Moreover, those studies which assessed various fuel/propulsion options in China from a life cycle perspective are examined to present an overview of the potential for reducing energy use and emissions. Recommendations for further developments are also made. It is concluded that comprehensive and appropriate strategies will be needed to minimise the adverse impacts of China's road vehicles on energy resources and the environment. Fortunately, China appears to be heading in this direction.  相似文献   

8.
Grid-connected vehicles (GCVs)—e.g., electric trains, metros, trams, and trolley buses—are propelled by electric motors directly connected to remote power sources. Their low at-vehicle energy consumption and ability to use a wide range of renewable energy sources make them strong contenders for urban and interurban transport systems in an era of energy constraints that favours use of renewable fuels, which may lie ahead. Needs for autonomous motorised mobility could be acceptably met in large measure by deployment of personal GCVs, also known as personal rapid transit (PRT). Alternatives, including fuel-cell vehicles and dual-drive vehicles fuelled with ethanol, will be less feasible. The ‘car of the future’ may not be an automobile so much as a PRT element of a comprehensive GCV-based system that offers at least as much utility and convenience as today's transport systems.  相似文献   

9.
European Union countries’ current energy policies for the transport sector promote, amongst other initiatives; urban mobility plans, the renewal of fleets of cars and industrial vehicles and the introduction of biofuel. From the point of view of eco-efficiency and Life Cycle Assessment (LCA), energy policies must go further. The objective of this paper is to analyse the current transport model and the policies on energy efficiency being promoted in the EU from a LCA point of view. Special attention has been paid to private vehicles, in assessing the environmental impact of the various stages of manufacture, their use and disposal, and the consequences of plans to renew fleets. How old should a vehicle ideally be so that when it is changed, the embodied energy in the materials of the vehicle is less than the gain in energy efficiency due to changing the model for example? In addition the paper analyses the different means of transport in the energy consumption-time ratio from a LCA viewpoint. The fact that reducing transport times leads to greater energy consumption gives rise to the question: how long does nature take to repair the environmental damage caused?  相似文献   

10.
We use a newly developed bottom-up model of the entire Canadian energy system (TIMES-Canada) to assess potentials for electrification of the road transport sector. A special emphasis has been put on the modelling of the Canadian road transport, by considering a variety of vehicles for passenger and freight transportation. Besides a business-as-usual (baseline) scenario, we have analysed an energy policy scenario imposing targets for electric vehicle penetration and a climate policy scenario imposing targets for greenhouse gas emission reduction. Our analysis shows on the one hand that electric vehicles penetrate notably the passenger vehicle market after 2040 in the baseline scenario and after 2030 in the energy policy scenario (following the assumed penetration targets). On the other hand, the assumed climate policy forces a stronger penetration of electric vehicles for passenger transportation, with a progressive phasing out of internal combustion engine vehicles, whereas the latter vehicles remain dominant for freight transportation but with a shift away of fossil fuels and in favour of biofuels. A sensitivity analysis on the (assumed) evolution of electric vehicles over time confirms these general trends.  相似文献   

11.
By providing affordable mobility to millions of people, two-wheeled motor (M2W) vehicles play a vital role in urban transport in India and other low-income Asian countries. At the same time, these vehicles contribute significantly to urban transport impacts and energy consumption, and are characterized by high emissions and traffic mortalities per passenger-kilometre. Given the importance of technology in the popularity of these vehicles and their transport impacts, this paper discusses the evolution of M2W vehicle technology in India, and contributory factors including market forces, environmental regulation, and industry R&D efforts. It then discusses technologies that we expect to be implemented for M2W vehicles in India over the next two or three decades, the likely implications of these technologies in terms of vehicle price, emissions, fuel economy and service life, and issues related to vehicle technology development and implementation. The paper shows that while the Indian M2W vehicle industry has achieved a transformation in innovation, product development and quality in response to market demands and environmental concerns, various technological and institutional challenges need to be addressed by this and the oil and vehicle servicing industries, and government agencies at all levels, to successfully deploy advanced vehicle technologies.  相似文献   

12.
The global rise of greenhouse gas (GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. Alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. However, the overall transport policy framework in major world economies is geared towards the use of conventional fossil fuels. This paper evaluates the effectiveness and efficiency of current climate policies for road transport that (1) target fuel producers and/or car manufacturers, and (2) influence use of alternative fuels and technologies. With diversifying fuel supply chains, carbon intensity of fuels and energy efficiency of vehicles cannot be regulated by a single instrument. We demonstrate that vehicles are best regulated across all fuels in terms of energy per distance. We conclude that price-based policies and a cap on total emissions are essential for alleviating rebound effects and perverse incentives of fuel efficiency standards and low carbon fuel standards. In tandem with existing policy tools, cap and price signal policies incentivize all emissions reduction options. Design and effects of cap and trade in the transport sector are investigated in the companion article (Flachsland et al., in this issue).  相似文献   

13.
Maritime industry has led renewable energy sources for the greener environment and efficient vehicles that effect by increasing population and energy demands. Hydrogen is one of the most popular of these renewable energy sources and one of the most favourable research area, worldwide. In this study, authors reported the usage of hydrogen fuel cells in marine transport as main power forwarder, their advantages and challenges under the lights on state of art and furthermore new technologies perspective. The latest research activities, hydrogen production and storage methods with challenges are analyzed and the developments of fuel cell based marine vehicles are discussed. In detailed, newly approachment of electrolyses from seawater for sustainable fuel necessity is discussed. As a result, this forseen study is important in terms of handling energy from seawater and compiling the latest technology for marine transport.  相似文献   

14.
Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators and distributors and hydrogen as energy carrier, can provide a 100% renewable, reliable and cost effective energy system, for power, heat, and transport. A smart city area is designed and dimensioned based on European statistics. Technological and cost data is collected of all system components, using existing technologies and well-documented projections, for a Near Future and Mid Century scenario. An energy balance and cost analysis is performed. The smart city area can be balanced requiring 20% of the car fleet to be fuel cell vehicles in a Mid Century scenario. The system levelized cost in the Mid Century scenario is 0.09 €/kWh for electricity, 2.4 €/kg for hydrogen and specific energy cost for passenger cars is 0.02 €/km. These results compare favorably with other studies describing fully renewable power, heat and transport systems.  相似文献   

15.
The aim of comparative assessment of future road transport technologies is to find the cheapest motor vehicles in terms of private and external Greenhouse Gas (GHG) emission costs under various international climate change mitigation scenarios in 2020 and 2050. The comparative assessment of the main road transport technologies ranging from conventional vehicles to hybrid electric vehicles was performed. The main indicators for comparative future motor vehicles assessment are: private costs and life cycle external costs of GHG emissions. The obtained ranking of road transport technologies allows to identify the most perspective future motor vehicles taking into account international climate change mitigation constraints and to promote these road technologies by policy tools. The cheapest road transport technologies in 2020 and 2050 are: the main results presented in this paper were obtained during EU financed Framework 7 project “PLANETS” dealing with probabilistic long-term assessment of new energy technology scenarios.  相似文献   

16.
江家丰 《节能技术》2012,30(4):349-352
公路运输的发展受到能源尤其是石油的制约,公路运输部门倡导节能是其自身可持续发展的必然选择。本文从影响公路运输节能效果的结构性因素出发,对各结构性子因素进行分析,提出应提高公路设施水平、优化车辆运力结构、倡导运输企业集约化经营以及调整车辆能源利用结构等促进结构性节能的结论。  相似文献   

17.
本文首先通过Bass模型对各类新能源汽车动力技术/车型保有量变化趋势进行预测。在此基础上,采用LEAP模型测算了交通部门能源消费,并利用GREET模型的分析结果分两种情景预测了全生命周期温室气体排放量。研究发现,较混合动力汽车快速发展情景,新能源汽车普及情景下我国道路交通能耗及排放水平总量将显著下降,且能耗及排放峰值都将明显提前,新能源汽车的快速发展将对加速我国交通能源转型及温室气体减排起到关键作用。  相似文献   

18.
An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system and feasibility analyses. Large-scale heat pumps prove to be especially promising as they efficiently reduce the production of excess electricity. Flexible electricity demand and electric boilers are low-cost solutions, but their improvement of fuel efficiency is rather limited. Battery electric vehicles constitute the most promising transport integration technology compared with hydrogen fuel cell vehicles (HFCVs). The costs of integrating RES with electrolysers for HFCVs, CHP and micro fuel cell CHP are reduced significantly with more than 50% of RES.  相似文献   

19.
我国交通运输行业能源消费和排放与典型国家的比较   总被引:19,自引:1,他引:19  
吴文化 《中国能源》2007,29(10):19-22,9
交通运输行业作为能源消费增长最快的行业领域之一,对建设节约型社会战略的实施具有重要的影响。机动化水平的快速提高在消费大量燃油的同时也产生大量的污染排放物。本文依据相关统计资料,对比分析了中国与美国、日本在交通运输领域的能源消费与主要污染物排放水平,并分析了由于中国相关统计原因造成的能耗数据的差异。结合未来经济社会持续快速增长带动运输需求的快速持续增长的趋势,借鉴美国、日本等发达国家的发展趋势与经验教训,对未来中国交通运输业能源消费与减排进行了趋势性判断分析。  相似文献   

20.
This study deals with the estimation of emissions caused by vehicular traffic based on transport demand and energy consumption. Projected transport demand is calculated with Genetic Algorithm (GA) using population, gross domestic product per capita (GDPPC) and the number of vehicles. The energy consumption is modelled with the GA using the veh-km. The model age of the vehicles and their corresponding share for each year using the reference years is obtained. The pollutant emissions are calculated with estimated transport and energy demand. All the calculations are made in line to meet the European standards. For this purpose, two cases are composed. Case 1: Emissions based on energy consumption, and Case 2: Emissions based on transport demand. The both cases are compared. Three policies are proposed to control demand and the emissions. The policies provided the best results in terms of minimum emissions and the reasonable share of highway and railway mode as 70% and 30% usage for policy I, respectively. The emission calculation procedure presented in this study would provide an alternative way to make policies when there is no adequate data on emission measurement in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号