首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

2.
In recent years, there has been a rapid transition from internal combustion engines to hybrid and electric vehicles. It is an inevitable fact that the dominance of internal combustion engines in the market will continue for many years due to the charging and battery problems in these vehicles. Therefore, it is an important issue to improve the performance and emissions of internal combustion engines by making them work with alternative energy sources. In this study, hydrogen-diesel dual fuel mode was used in a dual-fuel compression ignition single cylinder engine with common rail fuel injection system and electronically controlled gas fuel system. The study was carried out at constant speed (1850 rpm), different load (3-4.5-6-7.5-9 Nm) and different hydrogen injector opening amounts (1.6-1.8-2.0 ms). The effects of hydrogen energy ratios obtained with different hydrogen injector opening amount on engine performance and emissions were examined. According to the results, it was determined that the in-cylinder pressure values increased at medium and high loads, and the specific energy consumption decreased. When the emission values were examined, it was determined that there was an increase in NO emissions and a significant decrease in other emissions. However, increasing the hydrogen energy ratio above 14% adversely affected engine performance and emissions.  相似文献   

3.
Hydrogen fueled scramjet is a candidate for use as the engine of the aerospace plane for its high specific impulse. To further improve the specific impulse performance, analysis of combustion mode and operating route for a hydrogen fueled scramjet engine was investigated in this study. A scramjet engine with two-staged hydrogen injection was simulated by one-dimension numeric method within the acceleration from Mach 4 to 7. Three typical combustion modes (scramjet-mode, transitional mode and ramjet-mode) could be attained by changing the total amount of fuel added or adjusting the fuel distribution between two injectors. Simulation results show that better thrust performance can be achieved as more fuel injected at the upstream fuel injector as possible, while ensuring the engine safety. From a standpoint of specific impulse maximization, an optimal scramjet combustion mode database was presented and the boundary of the combustion mode transition was determined. Meanwhile, optimal operating route was also suggested for scramjet operation in this study.  相似文献   

4.
At the present work for improving the engine performance and decrease of emissions, a port injection gasoline engine is converted into direct injection. Engine performance behavior was investigated by AVL Fire software with adding hydrogen to natural gas from 0% up to 30%. Validation of the simulated model and experimental results show good confirmation. To determine the relationship between independent variables engine speed, ignition timing, injection timing and H2% versus the dependent variables including engine performance parameters, specific fuel consumption, CO and statistical analysis models were used. Comparison between different errors models shows that Radial basis function model with training algorithm Bayesian regularization back propagation can estimate better engine performance variables. The results showed that adding hydrogen to natural gas cause the output power, torque, fuel consumption efficiency increase and specific fuel consumption drop. Also, CO decreases when ignition and injection timing be advanced and engine speed reaches to its largest.  相似文献   

5.
This paper presents the research results on an innovative concept of a twining injector system to supply a flexible syngas-biogas-hydrogen blend for engines working in a hybrid solar-biomass renewable energy system. The effects of nozzle diameter, injection pressure and nozzle location were considered. Simulation results showed that the twining injector system, including 2 injectors with a nozzle diameter of 5 mm located close to the inlet port and 1-bar injection pressure is suitable for Honda GX200 engine fueled with syngas-biogas-hydrogen. At engine speed of 3000 rpm, for syngas-biogas blend, the injection duration of the first injector is reduced from 120 CA to 23 CA while the second injector keeps the injection duration stable at 120 CA to 50% biogas, then reduced to 74 CA for full biogas injection. For syngas-hydrogen blend, the first injector keeps the stable injection duration of 120 CA to 50% hydrogen, then gradually decreases to 44 CA, corresponding to 100% hydrogen; the injection duration of the second injector decreases from 120 CA to 24 CA and then keeps constant until hydrogen content reaches 70%. The injection duration of each injector for syngas-biogas-hydrogen blend is within the limits between the injection duration of the syngas-biogas and that of the syngas-hydrogen blends. The mixture of syngas-biogas-hydrogen blend and air in the combustion chamber created by twining injector system was more homogeneous than that created by traditional port fuel injection system.  相似文献   

6.
柴油机喷油器故障直接影响到燃油的喷射质量,导致燃烧过程恶化,影响柴油机的性能指标。常规的模糊神经网络中,模糊运算往往采用静态的、局部优化运算方法,往往存在技术上的难点,为此提出了一种基于补偿模糊神经网络的智能诊断系统。该系统将神经网络和补偿模糊逻辑相结合,采用动态、全局优化的运算,充分利用了相互间的优点,使网络更适应、更优化,加快训练速度。运用到柴油机燃油喷射系统故障中,取得了较好的效果。  相似文献   

7.
Performance of direct-injection off-road diesel engine on rapeseed oil   总被引:2,自引:0,他引:2  
This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine operating on Diesel fuel and cold pressed rapeseed oil. The purpose of this research is to study rapeseed oil flow through the fuelling system, the effect of oil as renewable fuel on a high speed Diesel engine performance efficiency and injector coking under various loading conditions.Test results show that when fuelling a fully loaded engine with rapeseed oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.2 and 12.8% than that for Diesel fuel. However, the brake thermal efficiency of both fuels does not differ greatly and its maximum values remain equal to 0.37–0.38 for Diesel fuel and 0.38–0.39 for rapeseed oil. The smoke opacity at a fully opened throttle for rapeseed oil is lower by about 27–35%, however, at the easy loads its characteristics can be affected by white coloured vapours.Oil heating to the temperature of 60 °C diminishes its viscosity to 19.5 mm2 s−1 ensuring a smooth oil flow through the fuel filter and reducing the brake specific energy consumption at light loads by 11.7–7.4%. Further heating to the temperature of 90 °C offers no advantages in terms of performance. Special tests conducted with modified fuel injection pump revealed that coking of the injector nozzles depends on the engine performance mode. The first and second injector nozzles that operated on pure oil were more coated by carbonaceous deposits than control injector nozzles that operated simultaneously on Diesel fuel.  相似文献   

8.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

9.
In this work, a single cylinder conventional spark ignition engine was converted to operate with hydrogen using the timed manifold fuel injection technique. A solenoid operated gas injector was used to inject hydrogen into the inlet manifold at the specified time. A dedicated electronic circuit developed for this work was used to control the injection timing and duration. The spark timing was set to minimum advance for best torque (MBT). The engine was operated at the wide-open throttle condition. For comparison of results, the same engine was also run on gasoline.The performance and emission characteristics with hydrogen and gasoline are compared. From the results, it is found that there is a reduction of about 20% in the peak power output of the engine when operating with hydrogen. The brake thermal efficiency with hydrogen is about 2% greater than that of gasoline. A lean limit equivalence ratio of about 0.3 could be attained with hydrogen as compared to 0.83 with gasoline. CO, CO2 and HC emissions were negligible with hydrogen operation. However, for hydrogen operation, NOx emission was four times higher than that of gasoline at full load power. The best ignition timing for hydrogen was much retarded when compared to gasoline. The effect of hydrogen injection pressure was also studied and no specific changes were observed. The effect of operating speed was also studied.  相似文献   

10.
Numerical modeling of direct hydrogen injection and in-cylinder mixture formation is performed in this paper. Numerical studies on direct-injection hydrogen engines are very limited due mainly to the complexity in modeling the physical phenomena associated with the high-velocity gas jet. The high injection pressure will result in a choked flow and develop an underexpanded jet at the nozzle exit, which consists of oblique and normal shock waves. A robust numerical model and a very fine computational mesh are required to model these phenomena. However, a very fine mesh may not be feasible in the practical engine application. Therefore, in this study a gas jet injection model is implemented into a multidimensional engine simulation code to simulate the hydrogen injection process, starting from the downstream of the nozzle. The fuel jet is modeled on a coarse mesh using an adaptive mesh refinement algorithm in order to accurately capture the gas jet structure. The model is validated using experimental and theoretical results on the penetrations of single and multiple jets. The model is able to successfully predict the gas jet penetration and structure using a coarse mesh with reasonable computer time. The model is further applied to simulate a direct-injection hydrogen engine to study the effects of injection parameters on the in-cylinder mixture characteristics. The effects of the start of fuel injection, orientation of the jets, and the injector location on the mixture quality are determined. Results show that the hydrogen jets impinge on the walls soon after injection due to the high velocity of the gas jet. The mixing of hydrogen and air takes place mainly after wall impingement. The optimal injection parameters are selected based on the homogeneity of the in-cylinder mixture. It is found that early injection can result in more homogeneous mixture at the time of ignition. Results also indicate that it is more favorable to position the injector near the intake valve to take advantage of the interaction of hydrogen jets and the intake flow to create a more homogeneous mixture.  相似文献   

11.
A thermodynamic model considering flame propagation is presented to predict SI engine characteristics for hydrogen-methane blends. The partially charge stratification approach which involves micro direct injection of pure fuel or a fuel–air mixture, to create a rich zone near the spark plug, is proposed as a method to improve engine performance. Presented approach was validated with experimental data for the natural gas at lean condition. The model was generalized to predict the performance of engine for a variety of hydrogen contents in hydrogen-methane blends. Hydrogen molar concentrations of 0%, 15%, 30%, and 45% were used in the simulations. Results showed that partially charge stratification improves engine performance by increasing indicated mean effective pressure and decreasing specific fuel consumption. The results indicated that increasing mole fraction of hydrogen content would improve the PSC effect on engine performance. An advantage of the presented model is the flexibility and simplicity that make it possible to investigate several effects such as mixture distribution and fuel constituents on engine performance more practical than other types of simulation.  相似文献   

12.
A port injection engine that supplies hydrogen to the intake manifold or port exhibits a low intake air amount and torque output. The torque output is limited by backfire. In the present study, the performance and efficiency of a port injection-type hydrogen engine using the fuel injector of a natural gas engine is investigated at various engines speeds under wide open throttle conditions and two operation strategies, i.e., limiting nitrogen oxide emission and maximizing the torque. The increase in electrode temperature is reduced by increasing the heat rating number of the spark plug or reducing the ignition energy applied to the spark plug. Even when the ignition energy is reduced, as the minimum ignition energy of hydrogen is very low, it does not eliminate backfire. However, when a cold-type spark plug is used, backfire is effectively suppressed, resulting in an increase in the maximum torque and a decrease in efficiency.  相似文献   

13.
Vegetable oils are a promising alternative among the different diesel fuel alternatives. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication oil from long-term use in diesel engines. These problems can be eliminated or minimized by transesterification of the vegetable oils to form monoesters. These monoesters are known as biodiesel. The important advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. Although the transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than that of petroleum diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of this study is to apply LHR engine for improving engine performance when biodiesel is used as an alternative fuel. For this purpose, a turbocharged direct injection (DI) diesel engine was converted to a LHR engine and the effects of biodiesel (produced from sunflower oil) usage in the LHR engine on its performance characteristics have been investigated experimentally. The results showed that specific fuel consumption and the brake thermal efficiency were improved and exhaust gas temperature before the turbine inlet was increased for both fuels in the LHR engine.  相似文献   

14.
Rotary engine generally sustains poor fuel economy and emissions performance at idle condition. Hydrogen has excellent physicochemical properties that can serve as an enhancer to improve the performance of the original engine. In this paper, a modified rotary engine equipped with dual fuel (hydrogen and n-butanol) port injection system and electronic ignition module was developed to explore the influence of hydrogen supplement on enhancing the idle performance of n-butanol rotary engine. In this study, the engine was run at the idle and stoichiometric with the original spark timing. Hydrogen volume percentage in the total intake was gradually increased from 0% to 7.9% by adjusting the fuel flow rate of n-butanol. The experimental results indicated that the engine instability and fuel energy flow rate were both reduced by enlarging the hydrogen supplying level. Combustion periods were shortened thanks to the enrichment of hydrogen. The peak chamber temperature was heightened as hydrogen fraction increased due to the improved combustion. HC and CO emissions were severally reduced by 50.4% and 85.8% when the hydrogen volume percentage was raised from 0% to 7.9%. However, NOx emissions were mildly increased because of the raised chamber temperature by increasing hydrogen fraction.  相似文献   

15.
The port-injection-type hydrogen engine is advantaged in that hydrogen gas is injected into the intake pipe through a low-pressure fuel injector, and the mixing period with air is sufficient to produce uniform mixing, improving the thermal efficiency. A drawback is that the flame backfires in the intake manifold, reducing the engine output because the amount of intake air is reduced, owing to the large volume of hydrogen. Here, the backfire mechanism as a part of the development of full-load output capability is investigated, and a 2.4-liter reciprocating gasoline engine is modified to a hydrogen engine with a hydrogen supply system. To secure the stability and output performance of the hydrogen engine, the excess air ratio was controlled with a universal engine control unit.The torque, excess air ratio, hydrogen fuel, and intake air flow rate changes in time were compared under low- and high-engine speed conditions with a wide-open throttle. The excess air ratio depends on the change in the fuel amount when the throttle is completely opened, and excess air ratio increase leads to fuel/air-mixture dilution by the surplus air in the cylinder. As the engine speed increases, the maximum torque decreases because the excess air ratio continues to increase due to the occurrence of the backfire. The exhaust gas temperature also increases, except at an engine speed of 6000 rpm. Furthermore, the increase in exhaust gas temperature affects the backfire occurrence. At 2000 rpm, under low-speed and wide-open throttle conditions, backfire first occurs in the No. 4 cylinder because the mixture is heated by the relatively high port temperature. In contrast, at 6000 rpm, under high-speed and wide-open throttle conditions, the backfire starts at the No. 2 cylinder first because of a higher exhaust gas temperature, resulting in a lower excess air ratio in cylinders 2 and 3, located at the center of the engine.  相似文献   

16.
Direct gaseous fuel injection in internal combustion engines is a potential strategy for improving in-cylinder combustion processes, performance and emissions outputs and, in the case of hydrogen, could facilitate a transition away from fossil fuel usage. Computational fluid dynamic studies are required to fully understand and optimise the combustion process, however, the fine grids required to adequately model the underexpanded gas jets which tend to result from direct injection make this a difficult and cumbersome task. In this paper the gaseous sphere injection (GSI) model, which utilises the Lagrangian discrete phase model to represent the injected gas jet, is further improved to account for the variation in the jet core length with better estimation due to total pressure ratio change. The improved GSI model is then validated against experimental hydrogen and methane underexpanded freestream jet studies, mixing in a direct injection hydrogen spark ignition engine and combustion in a pilot ignited direct injection methane compression ignition engine. The improved GSI model performs reasonably well across all cases examined which cover various pressure ratios, injector diameters, injection conditions and disparate gases (hydrogen and methane) while also allowing for relatively coarse meshes (cheaper computational cost) to be used when compared to those needed for fully resolved modelling of the gaseous injection process. The improved GSI model should allow for efficient and accurate investigation of direct injection gaseous fuelled engines.  相似文献   

17.
Hydrogen is one of the most promising options being considered as the fuel of future. However, injection of hydrogen into modern gasoline fueled engines can cause some issues such as power loss. This study, therefore, aims to address this challenge in a simulated hydrogen/gasoline dual-fueled engine by developing a novel and innovative approach without possible side effects such as NOx increment. To achieve this goal, the impacts of water injection and the start of the combustion (SOC) modification in a gasoline/hydrogen duel fueled engine have been rigorously investigated. In current methodology, an engine is simulated using AVL BOOST software and the model is validated against the experimental data. The Latin Hypercube design of experiments method was employed to determine the design points in 3-dimensional space. Due to the existing trade-off between NOx and BMEP, multi-objective optimization using genetic algorithm (GA) was implemented to determine the optimum values of water injection and SOC in various hydrogen energy shares and the effects of optimum design parameters on the main engine performance and emission parameters were investigated. The results showed that the proposed solution could recover the brake mean effective pressure (BMEP) and in some hydrogen energy shares even increase it above the level of single fueled gasoline engine with the added benefit of there being no increase in NOx compared to the original level. Furthermore, other emissions and engine performance parameters are improved including the engine equivalent Brake specific fuel consumption (BSFC) which was shown to increased up to 4.61%.  相似文献   

18.
Engine performance parameters, including fuel conversion efficiency (FCE), power, torque and specific fuel consumption (SFC), can be affected by variables such as ignition timing (IGT), injection timing (IT) and hydrogen volume fraction (H2%). In this paper an engine fueled with different H2/CNG blend rations from 0 to 50% volume under ignition and injection timing at different speeds were investigated. For model validation, the engine operating conditions were simulated using the AVL fire software and compared with experimental results. The statistical comparison showed that there was no significant difference between them. Also, a support vector machine (SVM) was used to study the engine's behavior according to the variables studied. The SVM model predicted the FCE, power, torque, SFC and CO with error of less than 4%. The Genetic Algorithm (GA) was used to find optimal IGT, IT and H2% values to achieve optimum engine performance. Therefore, the results showed that the optimum engine operating conditions depend on the engine speed. Also, the results showed that independent variables (IT, IGT and H2%) maximize the engine performance and minimize SFC and CO emission. So that the optimum use of hydrogen in this research at different engine speeds was between 20% and 30%.  相似文献   

19.
Hydrogen is a carbon free energy carrier with high diffusivity and reactivity, it has been proved to be a kind of suitable blending fuel of spark ignition (SI) engine to achieve better efficiency and emissions. Hydrogen injection strategy affects the engine performance obviously. To optimize the combustion and emissions, a comparative study on the effects of the hydrogen injection strategy on the hydrogen mixture distribution, combustion and emission was investigated at a SI engine with gasoline intake port injection and four hydrogen injection strategies, hydrogen direct injection (HDI) with stratified hydrogen mixture distribution (SHMD), hydrogen intake port injection with premixed hydrogen mixture distribution (PHMD), split hydrogen direct injection (SHDI) with partially premixed hydrogen mixture distribution (PPHMD) and no hydrogen addition. Results showed that different hydrogen injection strategy formed different kinds of hydrogen mixture distribution (HMD). The ignition and combustion rate played an important role on engine efficiency. Since the SHDI could use two hydrogen injection to organize the HMD, the ignition and combustion rate with the PPHMD was the fastest. With the PPHMD, the brake thermal efficiency of the engine was the highest and the emissions were slight more than that with the PHMD. PHMD achieve the optimum emission performance by its homogeneous hydrogen. The engine combustion and emission performance can be optimized by adjusting the hydrogen injection strategy.  相似文献   

20.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号