首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene has been considered to be a potential alternative transparent and flexible electrode for replacing commercially available indium tin oxide (ITO) anode. However, the relatively high sheet resistance and low work function of graphene compared with ITO limit the application of graphene as an anode for organic or polymer light‐emitting diodes (OLEDs or PLEDs). Here, flexible PLEDs made by using bis(trifluoromethanesulfonyl)amide (TFSA, [CF3SO2]2NH) doped graphene anodes are demonstrated to have low sheet resistance and high work function. The graphene is easily doped with TFSA by means of a simple spin‐coating process. After TFSA doping, the sheet resistance of the TFSA‐doped five‐layer graphene, with optical transmittance of ≈88%, is as low as ≈90 Ω sq?1. The maximum current efficiency and power efficiency of the PLED fabricated on the TFSA‐doped graphene anode are 9.6 cd A?1 and 10.5 lm W?1, respectively; these values are markedly higher than those of the PLED fabricated on pristine graphene anode and comparable to those of an ITO anode.  相似文献   

2.
Here we implement a systematic investigation of two-dimensional silver nanomeshes (AgNMs) for large-area, very low-resistive transparent electrodes and their successful application to ITO-free organic light-emitting diodes (OLEDs). Experimental results, as well as theoretical analyses with optical and electrical calculation, show that an optimized AgNM electrode fabricated via cost-effective colloidal lithography can have high transmittance and low sheet resistance simultaneously. By using an index-matching concept for further improvement of optical performance, highly transparent AgNM electrodes are achieved at very low sheet resistance (∼3.5 Ω/sq). Based on the study regarding transmittance variation of AgNM electrodes embedded in OLEDs, a pertinent index-matching layer is proposed for high performance AgNM-based OLEDs.  相似文献   

3.
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1000 nm. Motivated by a need for transparent conductors with comparable (or better) RS at a given T, as well as flexible structures, several alternative material systems have been investigated. Single‐layer graphene (SLG) or few‐layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large‐area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high‐resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/□ (stabilized to 13 Ω/□ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low‐cost commercial graphene with a starting RS of 770 Ω/□. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co‐percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high‐performance hybrid structures provides a route towards robust, scalable and low‐cost approaches for realizing high‐performance TCE.  相似文献   

4.
Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene‐based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high‐quality contact formation, precise alignment of micrometer‐scale patterns, and control of interfacial‐adhesion/local‐resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned‐graphene transfers at desired locations is presented. Using the thermal‐expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a “heating and cooling” process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and superhydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene‐based stretchable sensors, actuators, light‐emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.  相似文献   

5.
A laser‐based patterning technique—compatible with flexible, temperature‐sensitive substrates—for the production of large area reduced graphene oxide micromesh (rGOMM) electrodes is presented. The mesh patterning can be accurately controlled in order to significantly enhance the electrode transparency, with a subsequent slight increase in the sheet resistance, and therefore improve the tradeoff between transparency and conductivity of reduced graphene oxide (rGO) layers. In particular, rGO films with an initial transparency of ≈20% are patterned, resulting in rGOMMs films with a ≈59% transmittance and a sheet resistance of ≈565 Ω sq?1, that is significantly lower than the resistance of ≈780 Ω sq?1, exhibited by the pristine rGO films at the same transparency. As a proof‐of‐concept application, rGOMMs are used as the transparent electrodes in flexible organic photovoltaic (OPV) devices, achieving power conversion efficiency of 3.05%, the highest ever reported for flexible OPV devices incorporating solution‐processed graphene‐based electrodes. The controllable and highly reproducible laser‐induced patterning of rGO hold enormous promise for both rigid and flexible large‐scale organic electronic devices, eliminating the lag between graphene‐based and indium–tin oxide electrodes, while providing conductivity and transparency tunability for next generation flexible electronics.  相似文献   

6.
We investigated the highly flexible, transparent and very low resistance ZnS/1st Ag/ZnO/2nd Ag/WO3 (ZAZAW) multilayer electrodes on PET substrate as an anode in flexible organic light-emitting diodes (OLEDs). A theoretical calculation was first conducted to obtain the optimal thickness of the ZAZAW multilayer for high transparency. Its measured luminous transmittance was over 80% in the visible range with a very low sheet resistance of 2.17 Ω/sq., and it had good mechanical flexibility due to the ductility of Ag. Ag’s effect on optical and electrical properties was also studied. Flexible OLEDs devices that were fabricated on ZAZAW multilayer anode showed good hole injection properties comparable to those of ITO-based OLEDs due to the use of WO3 as a hole injection layer. However, the electroluminescent properties of the ZAZAW-based OLEDs varied depending on WO3 thickness. Although the transmittance of the ZAZAW electrode was reduced by tuning the WO3 thickness to adjust the microcavity effect, the device efficiency could be enhanced above that of ITO-based OLEDs.  相似文献   

7.
Silver nanowire coatings are an attractive alternative to indium tin oxide for producing transparent conductors. To fabricate coatings with low sheet resistance required for touchscreen displays, a multi‐layer network of silver nanowires must be produced that may not be cost effective. This problem is counteracted here by modifying the electrical properties of an ultra‐low‐density nanowire network through local deposition of conducting graphene platelets. Unlike other solution‐processed materials, such as graphene oxide, our pristine graphene is free of oxygen functional groups, resulting in it being electrically conducting without the need for further chemical treatment. Graphene adsorption at inter‐wire junctions as well as graphene connecting adjacent wires contributes to a marked enhancement in electrical properties. Using our approach, the amount of nanowires needed to produce viable transparent electrodes could be more than 50 times less than the equivalent pristine high density nanowire networks, thus having major commercial implications. Using a laser ablation process, it is shown that the resulting films can be patterned into individual electrode structures, which is a pre‐requisite to touchscreen sensor fabrication.  相似文献   

8.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) grids have been successfully constructed by roll‐to‐roll compatible screen‐printing techniques and have been used as indium tin oxide (ITO)‐free anodes for flexible organic light‐emitting diodes (OLEDs). The grid‐type transparent conductive electrodes (TCEs) can adopt thicker PEDOT: PSS grid lines to ensure the conductivity, while the mesh‐like grid structure can play an important role to maintain high optical transparency. By adjusting grid periods, grid thickness and treatment of organic additives, PEDOT: PSS TCEs with high optical transparency, low sheet resistance, and excellent mechanical flexibility have been achieved. Using the screen‐printed PEDOT: PSS grids as the anodes, ITO‐free OLEDs achieved peak current efficiency of 3.40 cd A?1 at the current density of 10 mA cm?2, which are 1.56 times better than the devices with ITO glass as the anodes. The improved efficiency is attributed to the light extraction effect and improved transparency by the grid structure. The superior optoelectronic performances of OLEDs based on flexible screen‐printed PEDOT: PSS grid anodes suggest their great prospects as ITO‐free anodes for flexible and wearable electronic applications.  相似文献   

9.
Chemical vapor deposition (CVD) provides a synthesis route for large‐area and high‐quality graphene films. However, layer‐controlled synthesis remains a great challenge on polycrystalline metallic films. Here, a facile and viable synthesis of layer‐controlled and high‐quality graphene films on wafer‐scale Ni surface by the sequentially separated steps of gas carburization, hydrogen exposure, and segregation is developed. The layer numbers of graphene films with large domain sizes are controlled precisely at ambient pressure by modulating the simplified CVD process conditions and hydrogen exposure. The hydrogen exposure assisted with a Ni catalyst plays a critical role in promoting the preferential segregation through removing the carbon layers on the Ni surface and reducing carbon content in the Ni. Excellent electrical and transparent conductive performance, with a room‐temperature mobility of ≈3000 cm2 V?1 s?1 and a sheet resistance as low as ≈100 Ω per square at ≈90% transmittance, of the twisted few‐layer grapheme films grown on the Ni catalyst is demonstrated.  相似文献   

10.
The synthesis and preparation of a new type of graphene composite material suitable for spin‐coating into conductive, transparent, and flexible thin film electrodes in ambient conditions is reported here for the first time. Solution‐processible graphene with diameter up to 50 μm is synthesized by surfactant‐assisted exfoliation of graphite oxide and in situ chemical reduction in a large quantity. Spin‐coating the mixing solution of surfactant‐functionalized graphene and PEDOT:PSS yields the graphene composite electrode (GCE) without the need for high temperature annealing, chemical vapor deposition, or any additional transfer‐printing process. The conductivity and transparency of GCE are at the same level as those of an indium tin oxide (ITO) electrode. Importantly, it exhibits high stability (both mechanical and electrical) in bending tests of at least 1000 cycles. The performance of organic light‐emitting diodes based on a GCE anode is comparable, if not superior, to that of OLEDs made with an ITO anode.  相似文献   

11.
We report a highly transparent organic/metal hybrid cathode of a Cs-doped electron transport layer (Cs-ETL)/Ag for transparent organic light-emitting diode (TOLED) applications. Particular attention is paid to the surface morphology on the Ag film and its influence on the optical transparency and electrical conductivity. With the use of Cs-ETL, a smooth and continuous surface morphology of Ag film was achieved, leading to a high transmittance of ~75% in TOLED with a low sheet resistance of 4.5 Ω/Sq in cathode film. We successfully applied our Cs-ETL/Ag transparent cathode to fabricate highly transparent OLEDs. Our approach suggests a new electrode structure for transparent OLED applications.  相似文献   

12.
The advent of special types of transparent electrodes, known as “ultrathin metal electrodes,” opens a new avenue for flexible and printable electronics based on their excellent optical transparency in the visible range while maintaining their intrinsic high electrical conductivity and mechanical flexibility. In this new electrode architecture, introducing metal nucleation inducers (MNIs) on flexible plastic substrates is a key concept to form high‐quality ultrathin metal films (thickness ≈ 10 nm) with smooth and continuous morphology. Herein, this paper explores the role of “polymeric” MNIs in fabricating ultrathin metal films by employing various polymers with different surface energies and functional groups. Moreover, a scalable approach is demonstrated using the ionic self‐assembly on typical plastic substrates, yielding large‐area electrodes (21 × 29.7 cm2) with high optical transmittance (>95%), low sheet resistance (<10 Ω sq?1), and extreme mechanical flexibility. The results demonstrate that this new class of flexible and transparent electrodes enables the fabrication of efficient polymer light‐emitting diodes.  相似文献   

13.
The next generation of optoelectronic devices requires transparent conductive electrodes to be flexible, inexpensive and compatible with large scale manufacturing processes. We report an ultrasmooth, highly conductive and transparent composite electrode on a flexible photopolymer substrate by employing a template stripping method. A random silver nanowire (AgNW) network buried in poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film constituted the composite electrode. Besides the effectively decreased surface roughness, its sheet resistance and transmittance are comparable to those of conventional PEDOT:PSS electrode. As a result, the efficiency of the OLEDs based on the composite electrode exhibited 25% enhancement compared to the OLEDs with conventional PEDOT:PSS electrode. Moreover, the performance of the flexible OLEDs remains stable after over one hundred bending cycles.  相似文献   

14.
A synthesis method of strictly monolayer and fully homogeneous graphene across tens of centimeter squares, by chemical vapour deposition onto standard copper foils, is presented. The growth technique involves cyclic injection of a carbon precursor separated by idle times with constant hydrogen exposure. The formation of spurious multilayer patches, which accompanies the standard growth techniques based on continuous exposure to methane, is inhibited here, in a broad range of pressure and gas composition, including in two pressure regimes which are known to yield distinctive grain morphologies (dendritic versus hexagonal). Raman spectra confirm the absence of defects within the graphene films. A mechanism for growth/suppression of the multilayer patches based on the carbon storage at defective regions is proposed. The importance of multilayer suppression is highlighted in a comparative study showing the detrimental effect of patches on the performances of graphene transistors and on the optical transparency of stacked layers. The full‐layer graphene sheets are superiorly homogeneous in terms of their optical and electronic properties, and are thus suited for applications for high‐density integration as well as transparent electrodes with spatially continuous optical absorbance. Graphene transistors fabricated by the pulsed CVD method exhibit room‐temperature mobilities with a mean value of 5000 cm2 V?1 s?1.  相似文献   

15.
Graphene sheets have been demonstrated to be the building blocks for various assembly structures, which eventually determine the macroscopic properties of graphene materials. As a new assembly structure, transparent macroporous graphene thin films (MGTFs) are not readily prepared due to the restacking tendency of graphene sheets during processing. Here, an ice crystal‐induced phase separation process is proposed for preparation of transparent MGTFs. The ice crystal‐induced phase separation process exhibits several unique features, including efficient prevention of graphene oxide restacking, easy control on the transparency of the MGTFs, and wide applicability to substrates. It is shown that the MGTFs can be used as porous scaffold with high conductivity for electrochemical deposition of various semiconductors and rare metal nanoparticles such as CdSe, ZnO, and Pt, as well as successive deposition of different materials. Notably, the macroporous structures bestow the MGTFs and the nanoparticle‐decorated MGTFs (i.e., Pt@MGTF and CdSe@MGTF) enhanced performance as electrode for oxygen reduction reaction and photoelectrochemical H2 generation.  相似文献   

16.
Transparent electrodes cannot easily be created with high transmittance and low sheet resistance simultaneously, although some optoelectronic devices, such as large organic light-emitting diode (OLED) displays and lightings, require very low resistive transparent electrodes. Here, we propose a very low resistive transparent electrode (~1.6 Ω/sq) with a high transmittance (~75%) for OLED devices, the transmittance level of which represents the highest reported value to date given such a low sheet resistance level. It consists of a stacked silver (Ag)/zinc oxide (ZnO)/Ag multilayer covered by high refractive index dielectric layers. The proposed multilayer electrode with optimal layer thicknesses has a high and wide spectral transmittance peak due to interference. The low sheet resistance is a result of two Ag layers connected via the sandwiched ZnO layer. In addition to its low sheet resistance coupled with high transmittance, the proposed multilayer electrode has good flexibility. An OLED with an anode of the stacked Ag/ZnO/Ag multilayer shows performance comparable to that of an anode of indium tin oxide.  相似文献   

17.
Transparent and flexible supercapacitors (TFSCs) as indispensable components for future transparent and flexible electronics have attracted significant interests. The Ag nanowires/poly(ethylene terephthalate) (PET) transparent conductive electrodes (TCEs) exhibit strong competitiveness applied in the TFSCs due to the exceptional conductivity and transparency. However, the environmental tolerance of Ag nanowires such as oxidation and sulfurization limits the reliability. Herein, electric‐double‐layer TFSCs based on Ag nanowires/PET TCEs as current collectors are reported. More importantly, a seamless, uniform, and flexible graphene layer behaves as armored and active components simultaneously for the TFSCs, by a facile electrodeposition process. On the one hand, the flexible graphene layer can isolate the Ag nanowires away from the oxidation well, particularly in the condition of electrolyte. On the other hand, the laminated graphene layer with wrinkles can store electrons, and the copercolating network of graphene layer and Ag nanowires can transport the electrons efficiently, cyclically accomplishing the operation of storage and transport, by which the synergistic effect endows the TFSCs with decent optical and electrochemical performances. The interfacial capacitance is evaluated to discuss the relationship between the structure of graphene layer and the measured capacitance. This facile process provides a rational architecture and insights into TFSCs.  相似文献   

18.
Motivated by the rising cost of tin‐doped indium oxide (ITO), the search for new transparent electrode materials to replace ITO is ongoing. TiN exhibits high electric conductivity, however, it is generally non‐transparent. Here, nanostructured TiN fiber patterns are synthesized on quartz glass and the resulting materials have a combination of high electric conductivity and optical transparency. A low sheet resistance of 15.8 Ohm sq?1 at 84% transparency is achieved on TiN nanofiber arrayed quartz glass. The achievements show a successful integration of electric and optical properties in ceramic nanofibers and provide a method for finding new materials to replace traditional ITO‐based transparent electrodes.  相似文献   

19.
Conventional methods to prepare large‐area graphene for transparent conducting electrodes involve the wet etching of the metal catalyst and the transfer of the graphene film, which can degrade the film through the creation of wrinkles, cracks, or tears. The resulting films may also be obscured by residual metal impurities and polymer contaminants. Here, it is shown that direct growth of large‐area flat nanographene films on silica can be achieved at low temperature (400 °C) by chemical vapor deposition without the use of metal catalysts. Raman spectroscopy and TEM confirm the formation of a hexagonal atomic network of sp2‐bonded carbon with a domain size of about 3–5 nm. Further spectroscopic analysis reveals the formation of SiC between the nanographene and SiO2, indicating that SiC acts as a catalyst. The optical transmittance of the graphene films is comparable with transferred CVD graphene grown on Cu foils. Despite the fact that the electrical conductivity is an order of magnitude lower than CVD graphene grown on metals, the sheet resistance remains 1–2 orders of magnitude better than well‐reduced graphene oxides.  相似文献   

20.
Flexible transparent display is a promising candidate to visually communicate with each other in the future Internet of Things era. The flexible oxide thin‐film transistors (TFTs) have attracted attention as a component for transparent display by its high performance and high transparency. The critical issue of flexible oxide TFTs for practical display applications, however, is the realization on transparent and flexible substrate without any damage and characteristic degradation. Here, the ultrathin, flexible, and transparent oxide TFTs for skin‐like displays are demonstrated on an ultrathin flexible substrate using an inorganic‐based laser liftoff process. In this way, skin‐like ultrathin oxide TFTs are conformally attached onto various fabrics and human skin surface without any structural damage. Ultrathin flexible transparent oxide TFTs show high optical transparency of 83% and mobility of 40 cm2 V?1 s?1. The skin‐like oxide TFTs show reliable performance under the electrical/optical stress tests and mechanical bending tests due to advanced device materials and systematic mechanical designs. Moreover, skin‐like oxide logic inverter circuits composed of n‐channel metal oxide semiconductor TFTs on ultrathin, transparent polyethylene terephthalate film have been realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号