首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Land surface temperature and emissivity are essential variables in numerous environmental studies. This article proposes a multi-scale wavelet-based temperature and emissivity separation (MSWTES) algorithm. MSWTES is based on the fact that the high frequencies of ground-leaving radiance and derived emissivity spectra using inaccurate temperature are both closely correlated with the atmospheric downward radiance spectrum. First, surface emissivity can be decomposed by multi-scale wavelet into an optimal level that can be derived from correlation between reconstructed high frequency of ground-leaving radiance and atmospheric downward radiance. Then the ratio of high-frequency energy to low-frequency energy of surface emissivity spectrum is used to measure the degree of atmospheric downward radiance residue in the calculated emissivity spectrum as well as the disparity between the initial surface temperature and the true value. Finally, we can derive the optimal estimate of surface temperature and calculate the surface emissivity spectrum accordingly with this criterion. The MSWTES is first tested by simulation data. When a noise-equivalent spectral error of 2.5 × 10–9 W cm?2 sr?1 cm is considered, the average temperature bias is 0.027 K and the root mean square error (RMSE) of emissivity is less than 0.003, except at the low and high ends of the 750–1250 cm?1 spectral region. Then, the MSWTES is applied to field measurements. As a whole, the MSWTES achieves an RMSE of 0.01 for emissivity retrieval under most conditions, but its accuracy degrades when sample emissivity is extremely low. Meanwhile, the MSWTES is compared to the iterative spectrally smooth temperature and emissivity separation (ISSTES) algorithm. The performance of the MSWTES is better than that of the ISSTES, which demonstrates the good performance of the MSWTES.  相似文献   

2.
As an image-driven method to correct for atmospheric effects, the cloud shadow (CS) approach does not require accurate radiometric calibration of the sensor, making it feasible to process remotely sensed data when radiometric calibration may contain non-negligible uncertainties. Using measurements from the Geostationary Coastal and Air Pollution Events Airborne Simulator and from the Moderate Resolution Imaging Spectroradiometer over the Louisiana Shelf, we evaluate the CS approach to airplane measurements in turbid-water environments. The original CS approach somehow produced remote-sensing reflectance (Rrs, sr?1) with an abnormal spectral shape, likely a result of the assumption of identical path radiance for the pair of pixels in and out of the shadow, which is not exactly valid for measurements made from a low-altitude airplane. To overcome this limitation, an empirical scheme using an effective wavelength-dependent radiance reflectance for the cloud (γ, sr?1) was developed and reasonable GCAS Rrs retrievals are then generated, which were further validated against in situ Rrs. Issues and challenges in applying CS to measurements of low-altitude airplanes are discussed.  相似文献   

3.
Abstract

The Sun-stimulated chlorophyll fluorescence is a small but significant property of phytoplankton which can be detected using remote-sensing techniques. Besides the influence of oceanic properties, chlorophyll fluorescence is masked by atmospheric extinction. While an increase in chlorophyll concentration of 1 mg/m3 causes an increase in the upwelling radiances of about 0·03Wm?2sr?1 μm?1 just above the water surface and due to the chlorophyll fluorescence, the upward radiances measured at λF = 685nm and at the top of the atmosphere ranges from 8 to 20Wm?2sr?1 μm?1 for realistic atmospheric turbidity variations and a solar zenith distance of Θs = 50·7°. Additionally, the fluorescence, peaking at λF = 685nm with a half-width of about 10 nm, is reduced by the absorption of O2 and H2O. However, the fluorescence signal is nearly unaffected, when wavelengths λ≥686nm are exluded and a spectral interval of ΔλF = 5nm is used for the radiance measurements.  相似文献   

4.
Users of thermal infrared data from the AVHRR on a NOAA polar-orbiting operational satellite convert the count value output to radiance units, and then assign an equivalent blackbody temperature to the radiance value. Assigning a blackbody temperature to the radiance value is an indirect process, which requires knowledge of the AVHRR spectral response function and a fairly complex calculation. Both difficulties can be avoided by the simple two-step process shown in this Letter. First, blackbody temperature is estimated from a square-root of the measured radiance, then the estimate is refined by values from a ‘universal’ correction curve. The RMS difference between this approximation and the complex calculation is a few hundredths deg K for temperatures in the 200-320 deg K range. The inverse computation, radiance from temperature, is accurate to within 0·01-0·02mWm?2sr?1 (cm?1)?1. Results are shown for the NOAA-7, -9, -11, and -12 spacecraft.  相似文献   

5.
In this study, we discuss the employment of microscale schlieren technique to facilitate measurement of inhomogeneities in a micromixer. By mixing dilute aqueous ethanol and water in a T-microchannel, calibration procedures are carried out to obtain the relation between the concentration gradients and grayscale readouts under various incident illuminations, concentrations of aqueous ethanol solution, and knife-edge cutoffs. We find that to broaden measuring range with minimal error, the luminous exitance should be tuned to have a reference background with an average grayscale readout of 121, and dilute aqueous ethanol solution with a mass fraction of 0.05 should be used along a 50 % cutoff. For concentration gradients greater than 6.8 × 10?3 or below ?2.5 × 10?2 μm?1, the calibration curves show great linearity. Correspondingly, the discernable limit of our microscale schlieren system is 2.3 × 10?5 μm?1 for a positive refractive index gradient and ?8.6 × 10?5 μm?1 for a negative refractive index gradient. Once the relation between concentration gradients and grayscale readouts is known, the concentration distribution in a microfluidic can be reconstructed by integrating its microscale schlieren image with appropriate boundary conditions. The results prove that the microscale schlieren technique is able to provide spatially resolved, noninvasive, full-field measurements. Since the microscale schlieren technique is directly linked to the measurement of a refractive index gradient, the present method can be easily extended to other scalar quantifications that are related to the variation of refractive index.  相似文献   

6.
Laser-induced breakdown spectroscopy (LIBS) has been applied for quantitative analysis of Al2O3, CaCO3 and MgO particles suspended in water. In the single elemental system, the plasma emission intensities of Al, Ca and Mg were linearly increased with concentration of elements in the range of 1.0×10?5–1.0×10?3  M, 1.0×10?4–2.0×10?3 M and 8.0×10?5 –4.0×10?3 M, respectively. We also investigated the concentration dependence of breakdown spectra for suspended mixtures of Al2O3, CaCO3 and MgO particles. The emission lines, such as Al I, Ca I, Ca II and Mg I, were appeared in the LIBS spectrum simultaneously, and each emission peak could be deconvoluted. The plasma emission intensities of Al, Ca and Mg in the multielemental system were also linearly increased with their concentrations in the range of 1.0×10?5–1.0×10?3 M, 1.0×10?4–2.0×10?3 M and 4.0×10?4–2.0×10?3 M, respectively. LIBS was found to be available for quantitative and qualitative measurement of the concentrations of Al2O3, CaCO3 and MgO particles suspended in water. The present results suggest that LIBS is a potentially useful tool for in-situ analysis on particles composition and concentrations for environmental monitoring by the wearable information equipments.  相似文献   

7.
A microfluidic chip for the chemiluminescence detection of cobalt (II) in water samples, based on the measurement of light emitted from the cobalt (II) catalysed oxidation of luminol by hydrogen peroxide in basic aqueous solution, is presented. The microfluidic chip was designed and fabricated from polydimethylsiloxane using micro-molding method. Optimized reagents conditions were found to be 5.0 × 10?4 mol/L luminol, 1.0 × 10?2 mol/L hydrogen peroxide, and 8.0 × 10?2 mol/L sodium hydroxide. The system can perform fully automated detection with a reagent consumption of only 2.4 μL each time. The linear range of the cobalt (II) ions concentration was 1.0 × 10?10–1.0 × 10?3 mol/L and the detection limit was 5.6 × 10?11 mol/L with the S/N ratio of 3. The relative standard deviation was 4.6 % for 1.0 × 10?5 mol/L cobalt (II) ions (n = 10).  相似文献   

8.
A simple, rapid and effective method for the determination of copper (II) in water on a PDMS microfluidic chip with chemiluminescence (CL) detection is presented. The CL reaction was based on oxidation of 1,10-phenanthroline by hydrogen peroxide in basic aqueous solution. Polydimethylsiloxane (PDMS) was chosen as material for fabricating the microfluidic chip with two steps lithography method. Optimized reagents conditions were found to be 6.0 × 10?5 mol/L 1,10-phenanthroline, 1.2 × 10?3 mol/L hydrogen peroxide, 6.5 × 10?2 mol/L sodium hydroxide and 2.0 × 10?3 mol/L Hexadecyl trimethyl ammonium Bromide (CTMAB). In the continuous flow injection mode the system can perform fully automated detection with a reagent consumption of only 3.4 μL each time. The linear range of the Cu (II) ions concentration was 1.0 × 10?8 mol/L to 1.0 × 10?4 mol/L, and the detection limit was 9.2 × 10?9 mol/L with the S/N ratio of 3. The relative standard deviation was 2.8 % for 1.0 × 10?6 mol/L Cu (II) ions (n = 8). The most notable features of the detection method are simple operation, rapid detection and easy fabrication of the microfluidic chip.  相似文献   

9.
The diffusion coefficient of dissolved oxygen (DO) was measured in a microchannel using the UV-LED induced fluorescence method. Mass transfer between oxic and anoxic de-ionized (DI) water was quantitatively visualized in a Y-shaped microchannel. Oxygen-sensitive ruthenium (tris (2,2′-bipyridine) ruthenium (II) chloride hexahydrate] and a 450-nm UV-LED were used for the optical measurement of a DO concentration field. In situ pixel-by-pixel calibration was carried out to obtain Stern–Volmer equations to measure the DO concentration field with a spatial resolution of 0.625 μm/pixel. The diffusion layers are successfully acquired for different Reynolds numbers (Re = 0.14, 1.4, and 14). The DO diffusion coefficient is calculated by both the constant-assumed and the concentration-dependent diffusion coefficient methods. The measured DO diffusion coefficient, 2.32 × 10?9 m2/s, is very close to that of the theoretical prediction of the oxygen gas diffusion coefficient, 2.16 × 10?9 m2/s.  相似文献   

10.
Thermionic power generation is a safe and clean energy source that allows for converting heat into electrical energy using thermionic electrons. The miniaturization is an advantage of this technology that led to the recent development of micro-gap thermionic power generators. In this work, thermal contact resistances between the micro-gap insulators and the emitter as well as between the micro-gap insulators and the collector are measured. A thermal resistance of 48.6 K/W is obtained by downsizing the insulators until 60 × 45 μm2 of contact area with the emitter, demonstrating a high impact for decreasing the micro-gap conduction heat loss density from the emitter to the collector from 28 W/cm2 (theoretical value obtained without considering contact resistances) to 5.6 W/cm2. Downsizing the contact area between the insulators and the emitter from 320 × 300 to 60 × 45 μm2 leads to an increase of the power conversion efficiency from 9.1 × 10?5 until 1.5 × 10?3.  相似文献   

11.
This study attempted to quantify the variations of the surface marine atmospheric boundary layer (MABL) parameters associated with the tropical Cyclone Gonu formed over the Arabian Sea during 30 May–7 June 2007 (just after the monsoon onset). These characteristics were evaluated in terms of surface wind, drag coefficient, wind stress, horizontal divergence, and frictional velocity using 0.5° × 0.5° resolution Quick Scatterometer (QuikSCAT) wind products. The variation of these different surface boundary layer parameters was studied for three defined cyclone life stages: prior to the formation, during, and after the cyclone passage. Drastic variations of the MABL parameters during the passage of the cyclone were observed. The wind strength increased from 12 to 22 m s?1 in association with different stages of Gonu. Frictional velocity increased from a value of 0.1–0.6 m s?1 during the formative stage of the system to a high value of 0.3–1.4 m s?1 during the mature stage. Drag coefficient varied from 1.5 × 10?3 to 2.5 × 10?3 during the occurrence of Gonu. Wind stress values varied from 0.4 to 1.1 N m?2. Wind stress curl values varied from 10 × 10?7 to 45 × 10?7 N m?3. Generally, convergent winds prevailed with the numerical value of divergence varying from 0 to –4 × 10?5 s?1. Maximum variations of the wind parameters were found in the wall cloud region of the cyclone. The parameters returned to normally observed values in 1–3 days after the cyclone passage.  相似文献   

12.
In this study, we deal with observations of aerosol column content (height integration of vertical distribution of aerosol number density) that have been carried out using an Ar+ lidar for three different measurement cycles (each cycle consisting of three experimental days associated with non-rain, rain, and non-rain, respectively) of weekly spaced observations for pre-monsoon (March/April 1994), monsoon (September 1991), and post-monsoon (October 1998). Based on these observed profiles of aerosol number concentration on rainy days with respect to those on non-rainy days, vertical distributions of scavenging collection efficiencies (SCEs) are computed and discussed in this article. The SCE is found to decrease from 0.3 to 0.01 between the heights, 100 and 800 m for thunderstorm rain in April 1994, and during monsoon, it increases from 0.1 to 0.7. In the October 1998 episode, SCE was found to increase initially from 0.35 to 0.75 for heights between 40 and 200 m and thereafter decrease to 0.35 in the height interval of 200–800 m. For the rainfall intensity increase from 1 to 10 mm hour?1, the corresponding scavenging coefficient (SC) for atmospheric layer 50–100 m varies from 4 × 10?6 to 4 × 10?5 s?1 for thunderstorm in April 1994 and between 5 × 10?6 and 5 × 10?5 s?1 in October 1998, respectively. During monsoon, these values vary from 3 × 10?5 to 5 × 10?4 s?1. They lie in the range of those observed in the earlier field studies. The results are found useful to establish links between aerosols and cloud properties, and the influence of such interactions on weather and climate.  相似文献   

13.
An atmospheric correction algorithm due to Deschamps et al. (1981) has been applied to MEIS-II data. Some atmospheric conditions such as continental and maritime aerosol models have been used in this work. Simulation on 5S code was made with Thematic Mapper Band 4 and Spot band 3. All these pieces of the puzzle permitted the qualification of algal concentration in an intertidal area, which was the aim of this work. Continental or maritime aerosol models gave a similar result due probably to the specific area, located between land and nearshore. Apparent radiance is smaller than corrected radiance because absorption process takes place in this part of the spectrum (0.8 to 0.9μm). When apparent radiance is higher than 30 Wm?2 sr?1 μm?1 algal concentration is overestimated by up to 60 per cent.  相似文献   

14.
The Dunhuang Chinese Radiometric Calibration Site (CRCS), used for the vicarious calibration (VC) of reflective solar bands (RSBs), was determined as the primary radiometric calibration site for Chinese space-borne optical sensors and was also selected in 2008 by the Working Group on Calibration and Validation of the Committee on Earth Observation Satellites as one of the instrumented reference sites. In August 2015, an in situ measurement was carried out at the Dunhuang site to evaluate the RSB radiometric calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (NPP) and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua based on the reflectance-based method. A portable spectroradiometer was used in the experiment to obtain the surface reflectance, and the atmospheric parameters were obtained by sun photometers and radiosonde. A Dunhuang surface bidirectional reflectance distribution function model obtained during the field missions in 2008 and 2013 was implemented. Two days of in situ measurement data including 2 days of VIIRS data and 1 day of MODIS data were used for this evaluation. The results show that the radiometric calibration accuracy is within ±2% for most NPP/VIIRS and Aqua/MODIS RSBs based on the Dunhuang site. It should be noted that there is a relatively large difference in the NPP/VIIRS day–night band (DNB) and Aqua/MODIS band 7 results at the central wavelength of 2.1 μm, with biases of – 4.78% and – 5.71%, respectively. One factor contributing to the difference is the atmospheric transmittance calculation in these bands using the 6S radiative transfer model. If Moderate Resolution Atmospheric Transmission model is used for atmospheric transmittance correction, part of the bias of the MODIS band 7 and VIIRS DNB can be eliminated. However, the consistency of the VIIRS M11 and MODIS B7 is 3.47%, which is larger than that of the other bands.  相似文献   

15.
The uncertainty in the top-of-the-atmosphere (TOA) radiance is a result of uncertainties in aerosol components, water-leaving radiance (due to seawater constitutions) and whitecap radiance. This paper investigates the variability of these individual terms over the Arabian Sea and particularly in Lakshadweep region, to establish a site for vicarious calibration of the Ocean Colour Monitor (OCM). We found that fractional coverage of whitecap radiance is less than 0.5% for winds lower than 8 m s?1 and its radiance contribution can be assigned to a constant value. For higher winds, the contribution from whitecap radiance to TOA radiance has to be considered along with the atmospheric stability factor. The Lakshadweep Sea, for most of the time, is characterized by a low concentration of chlorophyll-a, an oligotrophic water body and maritime aerosol.  相似文献   

16.
This article presents a methodology to quantitatively extract the solar-induced fluorescence (SIF) using the canopy reflectance index. The sensitivity analysis was conducted with a spectral vegetation Fluorescence Model (FluorMOD), and the results demonstrate that Sun zenith angle (θ), fluorescence quantum efficiency (Fi), leaf inclination distribution function (LIDF), leaf temperature (T), leaf area index, and leaf chlorophyll a + b content (chl-a+b) had large effects on the fluorescence radiance at 761 nm (LF,761). Based on the results of the sensitivity analysis, the input parameters θ, Fi, LIDF, T, and chl-a+b varied within a certain range during the generation of the simulated data. Based on the simulated data, R740/R630, R685/R850, and R750/R710 were thought to be the best candidates to extract the fluorescence radiation. The quantitative relationships between the fluorescence retrieved by R740/R630, R685/R850, and R750/R710 and LF,761 were analysed and expressed as functions of θ, Fi, T, and reflectance index. The correlation coefficients (r) between the fluorescence retrieved using R685/R850, R740/R630, and R750/R710 and LF,761 are 0.94, 0.95, and 0.95, respectively, and the root mean square errors (RMSEs) were 0.32, 0.29, and 0.30 W m?2 μm?1 sr?1, respectively. Through comparison with FLD and 3FLD, the method presented in this article yielded better results, and could be used to estimate the fluorescence. This methodology provides new insights into the quantitative retrieval of SIF from the reflectance spectrum.  相似文献   

17.
The post-launch calibration of the visible (channel l:≈0·58–0·68μm) and near-infrared (channel 2: ≈ 0·72–1·1 μm) channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft is described. The southeastern part of the Libyan desert (21–23° N latitude; 28–29° E longitude) is used as a radiometrically stable calibration target to determine the ‘slope’—the inverse of the gain—of the AVHRR, expressed in units of W (m?2 sr?1 μm?1 count?1), in the two channels in the course of 1995. The variation of the ‘slope’ with time during 1995 indicates that channel 1 has degraded at the annual rate of 7·7 per cent; and channel 2 at the rate of 10·5 per cent. Comparison of the AVHRR ‘slopes’ immediately after launch of NOAA-14 with the results of pre-launch calibration performed in September/October 1993 indicates that channel 2 experienced a deterioration of ≈ 18 per cent (relative) immediately after launch while channel 1 was not appreciably affected. Formulae are given for the calculation of the post-launch calibration coefficients for the two channels.  相似文献   

18.
The aim of this study was to explore the feasibility of an alternative method for in-flight absolute radiometric calibration of the thermal infrared (TIR) channels of the Chinese meteorological satellites FengYun-2B (FY-2B) and FengYun-2C (FY-2C). The alternative method substituted radiosonde atmospheric profiles with those from the National Centers for Environmental Prediction (NCEP) reanalysis and the water surface brightness temperatures from TIR radiometers (CE312) with those from an automated hydrometeorological buoy (AHMB) system over Qinghai Lake (QHL), China. These data were then used to calculate the calibration coefficients and their uncertainty for the TIR channels of FY-2B and FY-2C. The at-sensor radiance (ASR) and at-sensor brightness temperature (ASBT) of the TIR channels of FY-2B and FY-2C were calculated by using 14 atmospheric profiles as measured by radiosonde over QHL in August 2003 and the corresponding NCEP reanalysis data, respectively. In addition, we conducted sensitivity tests to different atmospheric profiles of varying relative humidity and air temperatures on the ASR and ASBT of the TIR channels of FY-2B and FY-2C. Differences in gains between the regular and alternative methods are less than 0.005 mW m–2 sr?1 cm?1 DN?1. The sensitivity tests show that the ASR and ASBT are more sensitive to the relative humidity than the temperature in the atmospheric profile. Our results show that the proposed alternative method, of which the uncertainty is about 1.5 K for the TIR channels of FY-2B and FY-2C, is feasible for the TIR channels of various remote sensors. One of the major benefits of this alternative method is the potential for more frequent, reliable and inexpensive calibrations of the TIR sensors in operational conditions.  相似文献   

19.
Stratospheric BrO and OClO observations have been made for the first time over a tropical station, Pune (18° 31′ N, 73° 55′ E) using a Differential Optical Absorption Spectroscopy (DOAS) technique by measuring zenith sky scattered light spectra in the wavelength range of 346–358 nm by ultraviolet (UV)/visible spectrometer. The Differential Optical Density (DOD) fitting technique is applied for the right selection of a suitable spectral region for the analysis to minimize interference and poorly fitting absorption features, and also to minimize the residual of the fit. Observed DODs of O3, NO2, BrO, OClO, O4, Rayleigh and Ring are well fitted with the calculated DODs and the percentage DODs are found to vary up to 0.5%, 0.8%, 0.15%, 0.13%, 1.5%, 1.2% and 1.3% respectively. Chlorine and bromine species play an important role in the ozone depletion, hence O3, NO2, BrO and OClO Slant Column Densities (SCDs) are derived between 76° and 94° Solar Zenith Angles (SZAs). The SCDs of O3 are found to be decreased in the twilight period (i.e. between 90° and 94° SZA) in the presence of sufficient BrO and OClO. Total Column Densities (TCDs) of O3, NO2, BrO and OClO are derived by UV/visible spectrometry, Brewer spectrometry and satellite-based Scanning Imaging Absorption spectrometer for Atmospheric Cartography (SCIAMACHY) for Pune and the higher latitude station Kanpur (26° 28′ N, 80° 24′ E) during the period 1 April–31 June 2008. The day-to-day variations in O3 and NO2 TCDs over Pune are found to be more than over Kanpur. BrO TCDs vary between 1.9?×?1013 and 4?×?1013 molecules cm?2 over Pune, which are derived by UV/visible spectrometry, while they vary for the high-altitude station Kanpur between 0.5?×?1013 and 3.5?×?1013 molecules cm?2 derived by SCIAMACHY. The OClO TCDs are found to have an increasing trend with variations between 2?×?1013 and 4.5?×?1013 molecules cm?2 during the above period.  相似文献   

20.
In the northern Arabian Sea, blooms usually occur during the northeast monsoon (November–January) and inter-monsoon (February–April) periods. After death, these phytoplankton blooms produce massive subsurface zones of low dissolved oxygen levels that have a major impact on the ocean water ecosystem. Many studies have been done to identify the bloom in this region, but those on the optical properties of bloom water are scarce. The present study emphasizes the optical properties (inherent) of the bloom water in the study region using in situ and satellite data. The total absorption coefficient of ocean water was measured from in situ radiance data collected in the northern Arabian Sea from the Sagar Sampada cruise (SS-286) during March 2011. The same data were also derived from the top-of-atmosphere radiance and remote sensing reflectance of the Oceansat 2 Ocean Colour Monitor (OCM-2) and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, respectively. A comparison between measured (in situ) and retrieved total absorption coefficients from OCM-2 was made. The measured and retrieved absorption coefficients are in good agreement. Root mean square errors between measured and retrieved absorption coefficients are 0.018 m?1, 0.026 m?1, and 0.034 m?1 for 490 nm, 510 nm, and 555 nm, respectively. An inter-comparison of total absorption properties retrieved from OCM-2 and MODIS data in the region of one degree radius around the stations was also made. A fairly good match was observed on 10, 14, and 16 March 2011 (coefficient of determination, R2 = 0.75, 0.87, and 0.62, respectively) for the blue band (490 nm) and (R2 = 0.77, 0.79, and 0.71, respectively) the green band (555 nm). The study demonstrates the potential of using remote-sensing optical data for identifying bloom waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号