首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presented work adresses the investigation of the influence of the variation of laser parameters such as pulse energy and the number of pulses on uncoated and coated surfaces with nitride and oxynitride coatings. Three different oxygen gas flows j(O2) = 10 sccm, j(O2) = 15 sccm and j(O2) = 20 sccm in the coating process and correspondingly three different resulting coating compositions with xj(O2) = 10 sccm = (39.8±4.2) atomic‐%, xj(O2) = 15 sccm = (31.6±1.4) atomic‐% and xj(O2) = 20 sccm = (58.4±6.0) atomic‐% were investigated. The analysis of the structure depth using confocal laser scanning microscopy showed that the structure depth is increased with increasing pulse energy and number of pulses. The line‐like interference structures with constant periodicity were detected by scanning electron microscopy. In addition, laser‐induced periodic surface structures with higher spatial frequency and smaller periodicity can be observed more clearly on all coated surfaces in the vertical direction. For coating with xj(O2) = 20 sccm = (58.4±6.0) atomic‐% a formation of microcracks on the flanks of the interference structure is observed after laser structuring.  相似文献   

2.
We demonstrate the effect of femtosecond laser structuring of titanium substrates to increase the absorption, photoconversion, and overall photoelectrochemical water splitting (PEC) performance compared to pristine metal substrates, independent of any additional top coat layers. The influence of ultra short laser pulse patterning on PEC efficiency is investigated toward spectroscopic (UV‐Vis), microscopic (SEM), crystallographic (XRD), and compositional (XPS) properties. The beneficial effect of a periodically patterned substrate is attributed to enhanced specific surface area and improved in‐plane light trapping when compared to flat surfaces. Photoanodes for water splitting experiments fabricated by titanium and iron oxide films on laser pre‐patterned Ti substrates are also found to show enhanced PEC efficiency (0.057 mA cm?2) when compared to unpatterened substrates (0.028 mA cm?2). The lower absolute PEC efficiencies are due to extreme thin films.
  相似文献   

3.
In nature, many examples of multi‐scale surfaces with outstanding tribological properties such as reduced friction and wear under dry friction and lubricated conditions can be found. To determine whether multi‐scale surfaces positively affect the frictional and wear performance, tests are performed on a ball‐on‐disk tribometer under lubricated conditions using an additive‐free poly‐alpha‐olefine oil under a contact pressure of around 1.29 GPa. For this purpose, stainless steel specimens (AISI 304) are modified by micro‐coining (hemispherical structures with a structural depth of either 50 or 95 μm) and subsequently by direct laser interference patterning (cross‐like pattern with 9 μm periodicity) to create a multi‐scale pattern. The comparison of different sample states (polished reference, laser‐patterned, micro‐coined, and multi‐scale) shows a clear influence of the fabrication technique. In terms of the multi‐scale structures, the structural depth of the coarser micro‐coining plays an important role. In case of lower coining depths (50 μm), the multi‐scale specimens show an increased coefficient of friction compared to the purely micro‐coined surfaces, whereas larger coining depths (95 μm) result in stable and lower friction values for the multi‐scale patterns.  相似文献   

4.
In this study, nanopillar arrays of silicon oxide are fabricated through a process involving very‐large‐scale integration, for use as two‐dimensional periodic relief gratings (2DPRGs) on silicon surfaces. Oligonucleotides are successively immobilized on the pillar surface, allowing the system to be used as an optical detector specific for the targeted single‐stranded DNAs (ssDNAs). The surfaces of the oligonucleotides‐modified 2DPRGs undergo insignificant structural changes, but upon hybridizing with target ssDNA, the 2DPRGs undergo dramatic changes in terms of their pillar scale. Binding of the oligonucleotides to the 2DPRG occurs in a way that allows them to retain their function and selectively bind the target ssDNA. The performance of the sensor is evaluated by capturing the target ssDNA on the 2DPRGs and measuring the effective refractive index (neff). The binding of the target ssDNA species to the 2DPRGs results in a color change from pure blue to red, observable by the naked eye along an angle of 15–20°. Moreover, effective medium theory is used to calculate the filling factors inside the 2DPRGs and, thereby, examine the values of neff during the structural changes of the 2DPRGs. Accordingly, these new films have potential applications as label‐free optical biosensors.  相似文献   

5.
Surface modification of topography and chemistry in order to achieve a specific water contact angle (CA) has been explored by using a novel combinatorial screening platform. The screening arrays consisted of 507 distinct combinations of micro‐topographies and chemical compositions. By performing chemical modifications with 1H, 1H, 2H, 2H perfluoroethyltriethoxy‐silane (PFS) and n‐octadecyltriethoxysilane (ODS) on standard silicon wafers it was possible to include both superhydrophobic and very hydrophilic pad arrays in the same screening platform. Surfaces modified with PFS were more hydrophobic than surfaces modified with ODS, while the unmodified silicon surfaces were hydrophilic. For the PFS modified surfaces the largest CAs were achieved with a small pillar size of X = 1 µm and an intermediate inter‐pillar gap size of Y = 4 µm with superhydrophobic CAs over 170°. Surface analysis with X‐ray photoelectron spectroscopy (XPS) revealed that CF3 groups were present at the surface, contributing to the superhydrophobic effect. The ODS modified surfaces had intermediate wettabilities with CAs between 100 and 150°, which were dependent on the pillar size, the inter‐pillar gap size, and the specific pillar pattern. The unmodified silicon topographical surfaces were very hydrophilic with CAs below 20° independent of specific topography. With this approach we have managed to fabricate 507 distinct surface areas covering a range of wettabilities, which is useful when screening these effects in several different applications. The measured CAs did not follow the simple Wenzel model. Furthermore, the adaptation of the Cassie model introduces Φs, the fraction of solid surface in contact with the liquid, which is difficult to estimate, thereby emphasizing the need for an experimental determination.  相似文献   

6.
Armchair graphene nanoribbons (AGNRs) with 8 and 10 carbon atoms in width (8‐ and 10‐AGNRs) are synthesized on Au (111) surfaces via lateral fusion of nanoribbons that belong to different subfamilies. Poly‐para‐phenylene (3‐AGNR) chains are pre‐synthesized as ladder ribbons on Au (111). Subsequently, synthesized 5‐ and 7‐AGNRs can laterally fuse with 3‐AGNRs upon annealing at higher temperature, producing 8‐ and 10‐AGNRs, respectively. The synthetic process, and their geometric and electronic structures are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). STS investigations reveal the band gap of 10‐AGNR (2.0 ± 0.1 eV) and a large apparent band gap of 8‐AGNRs (2.3 ± 0.1 eV) on Au (111) surface.  相似文献   

7.
Direct laser patterning of supported phospholipid multilayers is investigated. Spin coating is used to fabricate stacked bilayers of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphate (DOPA). Photothermal processing with a focused laser beam at λ = 514 nm allows removal of the coating at predefined positions without causing any significant change in adjacent areas. Moreover, processing with nanoscale precision is feasible despite the soft and fluid nature of phospholipid films. In particular, holes with diameters from 1.8 µm down to 300 nm and below are fabricated by using a 1/e2 laser spot size of about 2.5 µm. In addition, patterning is also very flexible and can be carried out over macroscopic length scales and at short processing times. Considering these features photothermal laser processing constitutes a powerful tool for micro‐ and nanopatterning of phospholipid films.  相似文献   

8.
Hierarchical N‐doped TiO2 nanostructured catalysts with micro‐, meso‐, and macroporosity are synthesized by a facile self‐formation route using ammonia and titanium isopropoxide precursor. UV–vis diffuse reflectance spectra confirm the red shift and band gap narrowing due to the doping of N species in the TiO2 nanoporous catalyst. Hierarchical macroporosity with fibrous channel patterning is observed and well preserved even after calcination at 800 °C, indicating thermal stability, whereas micro‐ and mesoporosity are lost after calcination at 500 °C. The photocatalytic activity of hiearchical N doped TiO2 catalysts loaded with Au is evaluated for H2 production reaction in visible light. The enhanced photocatalytic activity is attributed to the combined synergetic effect of N doping for visible light absorption, micro‐ and mesoporosity for an increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.  相似文献   

9.
A new process idea to create hierarchical surface structures is based on the combination of micro‐coining and laser interference patterning. Micro‐coining already proved to be a high precision cold bulk metal forging process which allows for the production of small surface structures in the range of 20–200 µm while fulfilling high requirements related to the geometrical accuracy of those structures. In addition to that, laser interference patterning utilizes interfering laser beams from a pulsed solid state Nd: YAG laser to generate precisely defined surface topographies with a long‐range order on the micron‐scale. For the first time, initial results of a process combination consisting of micro‐coining and laser interference metallurgy to induce hierarchical surface structures will be presented. The results highlight the advantages of the sequence micro‐coining prior to laser interference patterning due to smaller defects in contrast to the inverted process cycle. Additionally, process limitations such as shadowing which may result from steep flank angles of the coined structures and surface roughness effects are discussed by the use of finite element simulations within this research work.  相似文献   

10.
Plasma‐induced pattern formation is explored on polyethylene terephthalate (PET) using an oxygen plasma glow discharge. The nanostructures on PET are formed through preferential etching directed by the co‐deposition of metallic elements, such as Cr or Fe, sputtered from a stainless‐steel cathode. The local islands formed by metal co‐deposition have significantly slower etching rates than those of the pristine regions on PET, generating anisotropic nanostructures in pillar‐ or hair‐like form during plasma etching. By covering the cathode with the appropriate material, the desired metallic or polymeric elements can be co‐deposited onto the target surfaces. When the cathode is covered by a relatively soft material composed of only carbon and hydrogen, such as polystyrene, nanostructures typically induced by preferential etching are not observed on the PET surface, and the surfaces are uniformly etched. A variety of metals, such as Ag, Cu, Pt, or Si, can be successfully co‐deposited onto the PET surfaces by simply using a cathode covered in the desired metal; high‐aspect‐ratio nanostructures coated with the co‐deposited metal are subsequently formed. Therefore this simple single‐step method for forming hetero‐nanostructures—that is, nanoscale hair‐like polymer structures decorated with metals—can be used to produce nanostructures for various applications, such as catalysts, sensors, or energy devices.  相似文献   

11.
Flexible planar micro‐supercapacitors (MSCs) with unique loose and porous nanofiber‐like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber‐like structures, the areal capacitance of the inkjet‐printed flexible planar MSCs is obviously enhanced to 46.6 mF cm?2, which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best‐performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as‐fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet‐printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet‐printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost‐effective fabrication of high‐performance flexible MSCs via inkjet printing.  相似文献   

12.
Hydrophobic coatings enable the manufacture of easy‐to‐clean surfaces having dust‐ and water‐repellent properties. In this work, a hydrophobic coating is deposited as a top layer on an antireflective (AR) multilayer system to produce low reflectance optical surfaces at a normal incident angle in the visible spectrum with dust‐ and water‐repellent properties for applications in precision optics. It is shown that the hydrophobic coating can be considered, from an optical point of view, as two adjacent thin layers having specific thicknesses and densities. In fact, the hydrophobic layer is one monolayer comprising molecular chains with anchoring groups responsible for the chemical bond with the substrate material and functional groups responsible for the water‐ and oil‐repellent properties. Their optical constants are determined and included in the final coating design. High performance AR coatings having an average reflectance of 0.14% at 7° incident angle in the 400‐680nm spectral range together with a pleasing purplered reflex color are produced. Coated lenses exhibit an excellent abrasion resistance, environmental stability, resistance to cleaning agents, homogeneity and water repellence with contact angles against water higher than 110°.  相似文献   

13.
Recently, an emergent layered material Td‐WTe2 was explored for its novel electron–hole overlapping band structure and anisotropic inplane crystal structure. Here, the photoresponse of mechanically exfoliated WTe2 flakes is investigated. A large anomalous current decrease for visible (514.5 nm), and mid‐ and far‐infrared (3.8 and 10.6 µm) laser irradiation is observed, which can be attributed to light‐induced surface bandgap opening from the first‐principles calculations. The photocurrent and responsivity can be as large as 40 µA and 250 A W?1 for a 3.8 µm laser at 77 K. Furthermore, the WTe2 anomalous photocurrent matches its in‐plane crystal structure and exhibits light polarization dependence, maximal for linear laser polarization along the W atom chain a direction and minimal for the perpendicular b direction, with the anisotropic ratio of 4.9. Consistently, first‐principles calculations confirm the angle‐dependent bandgap opening of WTe2 under polarized light irradiation. The anomalous and polarization‐sensitive photoresponses suggest that linearly polarized light can significantly tune the WTe2 surface electronic structure, providing a potential approach to detect polarized and broadband lights up to far infrared range.  相似文献   

14.
Alignment or patterning of carbon nanotubes (CNTs) is particularly important for fabricating functional devices such as field emitters, nanophotonics, nanoelectronics, and ultrahydrophobic materials. This work briefly reviews recent progress on the synthesis of two‐dimensional CNT patterns, and then particularly concentrates on describing the pillar‐shaped fabrication and very interesting patterns of three‐dimensionally aligned CNTs formed by pyrolysis of iron(II ) phthalocyanine. The possible formation mechanism of the structures is discussed. The Figure shows the pillar‐shaped alignment of three‐dimensional CNTs.  相似文献   

15.
Abstract: A method for both temporal and spatial characterisation of harmonic vibrations is presented. The method is based on simultaneous acquisition of phase‐stepped speckle interference patterns using a shearing speckle interferometer and the vibration phase for a series of vibration states within the vibration period. An unsynchronised free‐running pulse laser is used for illuminating a vibrating object yielding speckle interference patterns in random vibration phase order. Two π/2 phase‐stepped speckle interference patterns are acquired simultaneously for each recorded vibration state. The data set is sorted using vibration phase as the sorting key. The sorted speckle interference patterns are processed using a two‐bucket algorithm for the calculation of phase difference and by applying temporal phase unwrapping to finally obtain unwrapped phase distributions for any vibration state of the vibration cycle.  相似文献   

16.
A novel method of fabricating large‐scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom‐up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low‐growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p‐GaN layer, piezo‐phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p‐GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV‐blue to yellow‐green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes.  相似文献   

17.
The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase‐like activity can decompose hydrogen peroxide (H2O2) to produce highly toxic hydroxyl radicals (?OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating‐mediated enzyme‐like activities. Herein, it is reported for the first time that amine‐terminated PAMAM dendrimer‐entrapped gold nanoclusters (AuNCs‐NH2) unexpectedly lose their peroxidase‐like activity while still retaining their catalase‐like activity in physiological conditions. Surprisingly, the methylated form of AuNCs‐NH2 (i.e., MAuNCs‐N+R3, where R = H or CH3) results in a dramatic recovery of the intrinsic peroxidase‐like activity while blocking most primary and tertiary amines (1°‐ and 3°‐amines) of dendrimers to form quaternary ammonium ions (4°‐amines). However, the hidden peroxidase‐like activity is also found in hydroxyl‐terminated dendrimer‐encapsulated AuNCs (AuNCs‐OH, inside backbone with 3°‐amines), indicating that 3°‐amines are dominant in mediating the peroxidase‐like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°‐amines on the surface of dendrimer‐encapsulated AuNCs provides sufficient suppression of the critical mediator ?OH for the peroxidase‐like activity. Finally, it is demonstrated that AuNCs‐NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage.  相似文献   

18.
The photothermal laser patterning of functional organic monolayers, prepared on oxide‐free hydrogen‐terminated silicon, and subsequent backfilling of the laser‐written lines with a second organic monolayer that differs in its terminal functionality, is described. Since the thermal monolayer decomposition process is highly nonlinear in the applied laser power density, subwavelength patterning of the organic monolayers is feasible. After photothermal laser patterning of hexadecenyl monolayers, the lines freed up by the laser are backfilled with functional acid fluoride monolayers. Coupling of cysteamine to the acid fluoride groups and subsequent attachment of Au nanoparticles allows easy characterization of the functional lines by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Depending on the laser power and writing speed, functional lines with widths between 1.1 μm and 250 nm can be created. In addition, trifluoroethyl‐terminated (TFE) monolayers are also patterned. Subsequently, the decomposed lines are backfilled with a nonfunctional hexadecenyl monolayer, the TFE stripes are converted into thiol stripes, and then finally covered with Au nanoparticles. By reducing the lateral distance between the laser lines, Au‐nanoparticle stripes with widths close to 100 nm are obtained. Finally, in view of the great potential of this type of monolayer in the field of biosensing, the ease of fabricating biofunctional patterns is demonstrated by covalent binding of fluorescently labeled oligo‐DNA to acid‐fluoride‐backfilled laser lines, which—as shown by fluorescence microscopy—is accessible for hybridization.  相似文献   

19.
Two InP‐based III–V semiconductor etching recipes are presented for fabrication of on‐chip laser photonic devices. Using inductively coupled plasma system with a methane free gas chemistry of chlorine and nitrogen at a high substrate temperature of 250 °C, high aspect ratio, anisotropic InP‐based nano‐structures are etched. Scanning electron microscopy images show vertical sidewall profile of 90° ± 3°, with aspect ratio as high as 10. Atomic Force microscopy measures a smooth sidewall roughness root‐mean‐square of 2.60 nm over a 3 × 3 μm scan area. The smallest feature size etched in this work is a nano‐ring with inner diameter of 240 nm. The etching recipe and critical factors such as chamber pressure and the carrier plate effect are discussed. The second recipe is of low temperature (?10 °C) using Cl2 and BCl3 chemistry. This recipe is useful for etching large areas of III–V to reveal the underlying substrate. The availability of these two recipes has created a flexible III–V etching platform for fabrication of on‐chip laser photonic devices. As an application example, anisotropic InP‐based waveguides of 3 μm width are fabricated using the Cl2 and N2 etch recipe and waveguide loss of 4.5 dB mm?1 is obtained.
  相似文献   

20.
A wafer‐scale patterning method for solution‐processed graphene electrodes, named the transfer‐and‐reverse stamping method, is universally applicable for fabricating source/drain electrodes of n‐ and p‐type organic field‐effect transistors with excellent performance. The patterning method begins with transferring a highly uniform reduced graphene oxide thin film, which is pre‐prepared on a glass substrate, onto hydrophobic silanized (rigid/flexible) substrates. Patterns of the as‐prepared reduced graphene oxide films are then formed by modulating the surface energy of the films and selectively delaminating the films using an oxygen‐plasma‐treated elastomeric stamp with patterns. Reduced graphene oxide patterns with various sizes and shapes can be readily formed onto an entire wafer. Also, they can serve as the source/drain electrodes for benchmark n‐ and p‐type organic field‐effect transistors with enhanced performance, compared to those using conventional metal electrodes. These results demonstrate the general utility of this technique. Furthermore, this simple, inexpensive, and scalable electrode‐patterning‐technique leads to assembling organic complementary circuits onto a flexible substrate successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号