首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pursuit of more selectivity in the delivery of plasmonic particles to tumors is critical before their penetration into clinical applications as the photoacoustic imaging and the photothermal ablation of cancer. As their direct infusion into the bloodstream remains problematic, due to a multitude of biological barriers, the development of alternative approaches is emerging as a new challenge. In this context, the recruitment of homologous tumor‐tropic cells that may serve as Trojan horses stands out as a fascinating possibility. Here, a novel model of gold nanorods is presented that feature a composite shell and undergo efficient and reproducible endocytic uptake from murine macrophages, which is fine‐tunable over a broad range of conditions. These cells preserve their viability and more than 90% of their innate chemotactic behavior in vitro, even with a cargo exceeding 200 000 particles per cell. In addition, we show that these vehicles are detectible by photoacoustic imaging down to concentrations in the order of 1% in whole blood and by clinical X‐ray computed tomography below 10%, which is within the typical fraction of a leukocytic infiltrate in a tumor microenvironment, and may even work as contrast agents for the photothermal ablation of cancer.  相似文献   

2.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes.  相似文献   

3.
The diagnosis of liver diseases is generally carried out via ultrasound imaging, computed tomography, and magnetic resonance imaging. The emerging photoacoustic imaging is an attractive alternative to diagnose even early stage of liver diseases providing high‐resolution anatomical and functional information in deep tissue noninvasively. However, the liver has insufficient photoacoustic contrast due to low optical absorbance in the near‐infrared windows. Here, a new hyaluronate–silica nanoparticle (HA–SiNP) conjugate for liver‐specific delivery and imaging for the diagnosis of liver diseases is developed. The HA–SiNP conjugates show high liver‐specific targeting efficiency, strong optical absorbance near‐infrared windows, excellent biocompatibility, and biodegradability. The liver‐specific targeting efficiency is verified by in vitro cellular uptake test, and in vivo and ex vivo photoacoustic imaging. In vivo photoacoustic imaging shows that photoacoustic amplitude in the liver injected with HA–SiNP conjugates is 4.4 times higher than that of the liver injected with SiNP. The biocompatibility and biodegradability of HA–SiNP conjugates are verified by cell viability test, optical spectrum analysis of urine, and inductively coupled plasma‐mass spectroscopy (ICP‐MS) analysis. Taken together, HA–SiNP conjugates may be developed as a promising liver targeted photoacoustic imaging contrast agent and liver‐targeted drug delivery agent.  相似文献   

4.
The performance of current multimodal imaging contrast agents is often constrained by the tunability of nanomaterial structural design. Herein, the influence of nanostructure on the overall imaging performance of a composite nanomaterial for multimodal imaging of brain tumors is studied. Newly designed near‐infrared molecules (TC1) are encapsulated into nanocomposites with ultrasmall iron oxide nanoparticles (UIONPs), forming stable nanoagents for multimodal imaging and photothermal therapy (PTT). Through a modified nanoprecipitation method, the synthesis of nanocomposites denoted as HALF is realized, in which UIONPs are restricted to half of the nanosphere. Such a unique nanostructure that physically separates TC1 and UIONPs is found with capabilities of mitigating fluorescence quenching, preserving the good performance of photoacoustic imaging, and enhancing the magnetic resonance imaging signals. Decorated with a peptide ligand cRGD for better brain tumor targeting, HALF‐cRGD is evaluated both in vitro and in vivo as imaging contrast agents and photothermal therapeutic agents. The good imaging performance and PTT effect of HALF‐cRGD in mice models indicate that the rational design and control of nanostructures could optimize multimodal imaging performance using the same components.  相似文献   

5.
Photothermal agents with absorption in the second near-infrared (NIR-II) biowindow have attracted increasing attention for photothermal therapy (PTT) on account of their deeper tissue penetration capacity. However, most of the current NIR-II photothermal agents exhibit low photothermal conversion efficiency (PCE) and long-term biotoxicity. To overcome these shortcomings, herein, nickel and nitrogen co-doped carbon dots (Ni-CDs, ≈4.6 nm) are prepared via a facile one-pot hydrothermal approach for imaging-guided PTT in the NIR-II window. The Ni-CDs exhibit significant absorption in the NIR-II region with a distinguished PCE as high as 76.1% (1064 nm) and have excellent photostability and biocompatibility. Furthermore, the Ni-CDs can be employed as photothermal, photoacoustic, and magnetic resonance imaging contrast agents because of their outstanding photothermal effect and instinctive paramagnetic feature. The Ni-CDs demonstrate significant PTT efficacy of tumor upon 1064 nm irradiation with a low power density (0.5 W cm−2). The Ni-CDs can be eliminated from the body via a renal filtration pathway, thereby minimizing their long-term biotoxicity. Therefore, this work provides a simple and feasible approach to develop photothermal agents with remarkable PCE in the NIR-II region, presenting good biosafety for multimodal imaging-guided PTT of tumor.  相似文献   

6.
Owing to the unique advantages of photoacoustic imaging (PAI) and photothermal therapy (PTT) conducted over the near-infrared-II (NIR-II) window, the development of high-efficiency optical agents with NIR-II light responsiveness is of great significance. Despite the diversity of optical agents developed for NIR-II PAI and PTT, most of them are based on inorganic nanomaterials and small molecular dyes, whose biosafety and photostability need to be further assessed, respectively. Organic semiconducting macromolecular dyes (OSMDs) featuring a large semiconducting backbone are becoming alternative candidates for NIR-II PAI and PTT owing to their reliable biocompatibility, durable photostability, and ideal photothermal conversion capability. This paper reviews the current progress of OSMD-based PAI and PTT in the NIR-II optical window. The three main types of OSMDs with different skeleton architectures are introduced, and their applications for NIR-II PAI (tumor imaging, stem cell tracking, and vasculature imaging) and PTT (tumor ablation) are described. Viable strategies for further improving the NIR-II PAI performance of OSMDs are discussed. Finally, some major issues faced by OSMDs in NIR-II PAI and PTT are raised, and the future development directions of OSMDs are analyzed.  相似文献   

7.
Phototheranostic agents in the second near‐infrared (NIR‐II) window (1000–1700 nm) are emerging as a promising theranostic platform for precision medicine due to enhanced penetration depth and minimized tissue exposure. The development of metabolizable NIR‐II nanoagents for imaging‐guided therapy are essential for noninvasive disease diagnosis and precise ablation of tumors. Herein, metabolizable highly absorbing NIR‐II conjugated polymer dots (Pdots) are reported for the first time for photoacoustic imaging guided photothermal therapy (PTT). The unique design of low‐bandgap D‐A π‐conjugated polymer (DPP‐BTzTD) together with modified nanoreprecipitation conditions allows to fabricate NIR‐II absorbing Pdots with ultrasmall (4 nm) particle size. Extensive experimental tests demonstrate that the constructed Pdots exhibit good biocompatibility, excellent photostability, bright photoacoustic signals, and high photothermal conversion efficiency (53%). In addition, upon tail‐vein intravenous injection of tumor‐bearing mice, Pdots also show high‐efficient tumor ablation capability with rapid excretion from the body. In particular, both in vitro and in vivo assays indicate that the Pdots possess remarkable PTT performance under irradiation with a 1064 nm laser with 0.5 W cm?2, which is much lower than its maximum permissible exposure limit of 1 W cm?2. This pilot study thus paves a novel avenue for the development of organic semiconducting nanoagents for future clinical translation.  相似文献   

8.
Silica particles are convenient ultrasound imaging contrast agents because of their long imaging time and ease of modification; however, they require a relatively high insonation power for imaging and have low biodegradability. In this study, 2 µm ultrathin asymmetric hollow silica particles doped with iron (III) (Fe(III)‐SiO2) are synthesized to produce biodegradable hard shelled particles with a low acoustic power threshold comparable with commercial soft microbubble contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, high intensity focused ultrasound ablation enhancement with these particles shows a 2.5‐fold higher temperature elevation than with Definity at the same applied power. The low power visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. The data are consistent with asymmetric engineering of hard particle properties that improve functionality of hard versus soft particles.  相似文献   

9.
Semiconducting polymer nanoparticles (SPNs) have potential in biological applications. While some SPNs have significant photothermal conversion efficiencies (PCEs) as photothermal and photoacoustic agents, other SPNs offer high fluorescence yields as photoluminescent agents. However, the energy balance distribution in SPNs inhibits their successful applications in photoluminescence/photoacoustic (PL/PA) dual‐modality imaging. Additionally, the ultrastability of SPNs in vivo may cause damage to organisms. This work reports nanocomposite semiconducting polymer and tetraphenylethene nanoparticles (STNPs) constructed by semiconducting polymers (SPs) and tetraphenylethene aggregation‐induced emission luminogens (TPE AIEgens). The SP SPC10 endows good photothermal conversion ability, and the AIEgen TPBM supports enhanced photoluminescence of the STNPs. The results show that the STNPs can act as PL/PA dual‐modality imaging agents. The signal‐to‐noise (S/N) ratio in the PL modality reaches 8.7, and the imaging depth in the PA modality is 5.8 mm. The SPC10 in the STNPs can be decomposed under 90 mW cm?2 white light irradiation in 6 h without any other additional agents. Furthermore, the STNPs are sufficient for the treatment of xenograft 4T1 tumor‐bearing mice based on photothermal therapy. The nanocomposite STNPs achieve optimized dual‐modality PL/PA imaging and the AIEgen‐triggered in situ photodegradation of SPNs. These properties indicate the significant potential of STNPs in clinical diagnosis and noninvasive therapy.  相似文献   

10.
Poly(lactide‐co‐glycolic acid) (PLGA) particles are biocompatible and bio­degradable, and can be used as a carrier for various chemotherapeutic drugs, imaging agents and targeting moieties. Micrometer‐sized PLGA particles were synthesized with gold nanoparticles and DiI dye within the PLGA shell, and perfluorohexane liquid (PFH) in the core. Upon laser irradiation, the PLGA shell absorbs the laser energy, activating the liquid core (liquid conversion to gas). The rapidly expanding gas is expelled from the particle, resulting in a microbubble; this violent process can cause damage to cells and tissue. Studies using cell cultures show that PLGA particles phagocytosed by single cells are consistently vaporized by laser energies of 90 mJ cm?2, resulting in cell destruction. Rabbits with metastasized squamous carcinoma in the lymph nodes are then used to evaluate the anti‐cancer effects of these particles in the lymph nodes. After percutaneous injection of the particles and upon laser irradiation, through the process of optical droplet vaporization, ultrasound imaging shows a significant increase in contrast in comparison to the control. Histology and electron microscopy confirm damage with disrupted cells throughout the lymph nodes, which slows the tumor growth rate. This study shows that PLGA particles containing PFC liquids can be used as theranostic agents in vivo.  相似文献   

11.
Ultrasound is the most commonly used clinical imaging modality. However, in applications requiring cell‐labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described. The perfluorocarbon enables monitoring the nanoparticles with quantitative 19F magnetic resonance imaging, making these particles effective multimodal imaging agents. Unlike typical core–shell perfluorocarbon‐based ultrasound contrast agents, these nanoparticles have an atypical fractal internal structure. The nonvaporizing highly hydrophobic perfluorocarbon forms multiple cores within the polymeric matrix and is, surprisingly, hydrated with water, as determined from small‐angle neutron scattering and nuclear magnetic resonance spectroscopy. Finally, the nanoparticles are used to image therapeutic dendritic cells with ultrasound in vivo, as well as with 19F MRI and fluorescence imaging, demonstrating their potential for long‐term in vivo multimodal imaging.  相似文献   

12.
Human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs) have become promising tools to repair injured hearts. To achieve optimal outcomes, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. In this study, it is demonstrated for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC‐CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong photoacoustic (PA) signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP‐labeled cells (2000) from background tissues. Second, the PANPs show a high efficiency for hESC‐CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC‐CMs in living mouse hearts can be assessed by PANP‐based PAI with high spatial resolution (≈100 µm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo, highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies.  相似文献   

13.
Improving the sensitivity of magnetic resonance imaging (MRI), a powerful non‐invasive medical imaging technique, requires the development of novel contrast agents with a higher efficiency than gadolinium chelates such as DTPA:Gd (DTPA: diethylenetriaminepentaacetic acid) that are currently used for clinical diagnosis. To achieve this objective, the strategy that we have explored involves the use of gold nanoparticles as carriers for gadolinium chelates. These nanoparticles are obtained by reducing a gold salt in the presence of a dithiolated derivative of DTPA. Characterization of these particles by transmission electron microscopy (TEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), colorimetric titration, and X‐ray photoelectron spectroscopy (XPS) reveals the presence of a multilayered shell containing about 150 ligands on 2–2.5 nm sized particles. These particles exhibit a high relaxivity (r1 = 585 mM –1 s–1 as compared to 3.0 mM –1 s–1 for DTPA:Gd), rendering them very attractive as contrast agents for MRI.  相似文献   

14.
Physicians are demanding innovative technologies for multimodal imaging of the cardiovascular system that would lead to the appearance of advanced diagnosis and therapy procedures. This implies the simultaneous development of new imaging techniques and contrast agents whose synergy would make it possible. Optical coherence tomography (OCT) has recently emerged as a versatile and high‐resolution clinical technique for cardiovascular imaging. Unfortunately, the lack of adequate contrast agents impedes the use of OCT for intracoronary multimodal imaging. In this work, the hitherto unexplored capability of semiconductor quantum dots (IR‐QDs) emitting in the third infrared biological window (1.55–1.87 µm) to act as multimodal agents for intracoronary imaging is demonstrated. Under single line laser excitation at 1.3 µm, IR‐QDs are capable of providing simultaneous backscattering contrast and efficient luminescence at 1.6 µm. In this work, backscattered radiation is successfully employed to construct OCT images in both fluids and tissues whereas the infrared luminescence of the IR‐QDs provides the possibility for simultaneous acquisition of high penetrating fluorescence images. The first multimodal (fluorescence + OCT) imaging of an artery using IR‐QDs as contrast agents is provided herein demonstrating their outstanding potential for future clinical applications.  相似文献   

15.
Polydimethylsiloxane (PDMS) is widely used in biomedical science and can form composites that have broad applicability. One promising application where PDMS composites offer several advantages is optical ultrasound generation via the photoacoustic effect. Here, methods to create these PDMS composites are reviewed and classified. It is highlighted how the composites can be applied to a range of substrates, from micrometer‐scale, temperature‐sensitive optical fibers to centimeter‐scale curved and planar surfaces. The resulting composites have enabled all‐optical ultrasound imaging of biological tissues both ex vivo and in vivo, with high spatial resolution and with clinically relevant contrast. In addition, the first 3D all‐optical pulse‐echo ultrasound imaging of ex vivo human tissue, using a PDMS‐multiwalled carbon nanotube composite and a fiber‐optic ultrasound receiver, is presented. Gold nanoparticle‐PDMS and crystal violet‐PDMS composites with prominent absorption at one wavelength range for pulse‐echo ultrasound imaging and transmission at a second wavelength range for photoacoustic imaging are also presented. Using these devices, images of diseased human vascular tissue with both structural and molecular contrast are obtained. With a broader perspective, literature on recent advances in PDMS microfabrication from different fields is highlighted, and methods for incorporating them into new generations of optical ultrasound generators are suggested.  相似文献   

16.
该文制备了巯基聚乙二醇(PEG)修饰的金纳米棒,该纳米材料在近红外区具有良好的光吸收特性,具备作为优良光声造影剂的潜质。该文通过透射电子显微镜(TEM)、紫外 可见(UV VIS)吸收光谱等测量手段对金纳米棒进行了形貌、结构、基本光学性能及光声成像效果等表征。实验结果表明,随着材料浓度的增加,体外光声信号的响应近似呈线性增长;经由PEG修饰,金纳米棒的生物相容性得到提高;PEG修饰后的金纳米棒对小鼠大脑皮层血管的成像效果得到提升。结果表明,PEG修饰的金纳米棒材料,在光声成像造影领域具有巨大的应用前景。  相似文献   

17.
Fabrication of ultrasmall single‐component omnipotent nanotheranostic agents integrated with multimodal imaging and multiple therapeutic functions becomes more and more practically relevant but challenging. In this article, sub 10 nm Bi2S3 biocompatible particles are prepared through a bovine serum albumin (BSA)‐mediated biomineralization process under ambient aqueous conditions. Owing to the ultrasmall size and colloidal stability, the resulting nanoparticles (NPs) present outstanding blood circulation behavior and excellent tumor targeting ability. Toward theranostic applications, the biosafety profile is carefully investigated. In addition, photothermal conversion is characterized for both photoacoustic imaging and photothermal treatment of cancers. Upon radiolabeling, the performance of the resulting particles for SPECT/CT imaging in vivo is also carried out. Additionally, different combinations of treatments are applied for evaluating the performance of the as‐prepared Bi2S3 NPs in photothermal‐ and radiotherapy of tumors. Due to the remarkable photothermal conversion efficiency and large X‐ray attenuation coefficient, the implanted tumors are completely eradicated through combined therapies, which highlights the potential of BSA‐capped Bi2S3 NPs as a novel multifunctional nanotheranostic agent.  相似文献   

18.
It is of great significance to develop a multifunctional imaging‐guided therapeutic platform with ideal resolution and sensitivity. Notably, rare‐earth (RE) nanoparticles are attractive candidates for multimodal imaging due to their unique optical and magnetic properties. In this work, a rational design of hierarchical nanohybrids employing RE‐Au hetero‐nanostructures is proposed. 1D RE nanorods are adopted as the core to facilitate cellular internalization with the coating of gold nanoshells for photothermal performances. Hydroxyl‐rich polycations with low cytotoxicity are grafted onto the surface of RE‐Au to produce RE‐Au‐PGEA (ethanolamine‐functionalized poly(glycidyl methacrylate)) nanohybrids with impressive gene transfection capability. Given the virtues of all the components, the feasibility of RE‐Au‐PGEA for multifunctional photoacoustic, computed tomography, magnetic resonance, upconversion luminescence imaging, and complementary photothermal therapy/gene therapy therapy is investigated in detail in vitro and in vivo. The visualization of the therapeutic processes with comprehensive information renders RE‐Au‐PGEA nanohybrid an intriguing platform to realize enhanced antitumor efficiency.  相似文献   

19.
Multimodal nanostructures can help solve many problems in the biomedical field including sensitive molecular imaging, highly specific therapy, and early cancer detection. However, the synthesis of densely packed, multicomponent nanostructures with multimodal functionality represents a significant challenge. Here, a new type of hybrid magneto‐plasmonic nanoparticles is developed using an oil‐in‐water microemulsion method. The nanostructures are synthetized by self‐assembly of primary 6 nm iron oxide core‐gold shell particles resulting into densely packed spherical nanoclusters. The dense packing of primary particles does not change their superparamagnetic behavior; however, the close proximity of the constituent particles in the nanocluster leads to strong near‐infrared (NIR) plasmon resonances. The synthesis is optimized to eliminate nanocluster cytotoxicity. Immunotargeted nanoclusters are also developed using directional conjugation chemistry through the Fc antibody moiety, leaving the Fab antigen recognizing region available for targeting. Cancer cells labeled with immunotargeted nanoclusters produce a strong photoacoustic signal in the NIR that is optimum for tissue imaging. Furthermore, the labeled cells can be efficiently captured using an external magnetic field. The biocompatible magneto‐plasmonic nanoparticles can make a significant impact in development of point‐of‐care assays for detection of circulating tumor cells, as well as in cell therapy with magnetic cell guidance and imaging monitoring.  相似文献   

20.
Increasing occurrences of degenerative diseases, defective tissues, and severe cancers heighten the importance of advanced biomedical treatments, which in turn enhance the need for improved biomaterials with versatile theranostic functionalities yet using minimal design complexity. Leveraging the advantages of citrate chemistry, a multifunctional citrate‐based biomaterial platform is developed with both imaging and therapeutic capabilities utilizing a facile and efficient one‐pot synthesis. The resulting aniline tetramer doped biodegradable photoluminescent polymers (BPLPATs) not only possess programmable degradation profiles (<1 to > 6 months) and mechanical strengths (≈20 MPa to >400 MPa), but also present a combination of intrinsic fluorescence, photoacoustic (PA), and electrical conductivity properties. BPLPAT nanoparticles are able to label cells for fluorescence imaging and perform deep tissue detection with PA imaging. Coupled with significant photothermal performance, BPLPAT nanoparticles demonstrate great potential for thermal treatment and in vivo real‐time detection of cancers. The results on BPLPAT scaffolds demonstrate 3D high‐spatial‐resolution deep tissue PA imaging (23 mm), as well as promote growth and differentiation of PC‐12 nerve cells. It is envisioned that the biodegradable dual‐imaging‐enabled electroactive citrate‐based biomaterial platform will expand the currently available theranostic material systems and open new avenues for diversified biomedical and biological applications via the demonstrated multifunctionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号