首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel nanoplatform based on tungsten oxide (W18O49, WO) and indocyanine green (ICG) for dual‐modal photothermal therapy (PTT) and photodynamic therapy (PDT) has been successfully constructed. In this design, the hierarchical unique nanorod‐bundled W18O49 nanostructures play roles in being not only as an efficient photothermal agent for PTT but also as a potential nanovehicle for ICG molecules via electrostatic adsorption after modified with trimethylammonium groups on their surface. It is found that the ability of ICG to produce cytotoxic reactive oxygen species for PDT is well maintained after being attached on the WO, thus the as‐obtained WO@ICG can achieve a synergistic effect of combined PTT and PDT under single 808 nm near‐infrared (NIR) laser excitation. Notably, compared with PTT or PDT alone, the enhanced HeLa cells lethality of the 808 nm laser triggered dual‐modal therapy is observed. The in vivo animal experiments have shown that WO@ICG has effective solid tumor ablation effect with 808 nm NIR light irradiation, revealing the potential of these nanocomposites as a NIR‐mediated dual‐modal therapeutic platform for cancer treatment.  相似文献   

2.
Mitochondria are recognized as the ideal target for cancer treatment because they play a central role in oxidative metabolism and apoptosis. In this work, a mitochondria‐targeted near‐infrared (NIR) photosensitizer (PS) for synchronous cancer photodynamic therapy (PDT) and photothermal therapy (PTT) is synthesized. This multifunctional small‐molecule PS is developed from a variety of synthesized heptamethine cyanine dyes, which are modified with various N‐alkyl side chains on the lipophilic cationic heptamethine core. It is demonstrated to preferentially accumulate in cancer cells by organic‐anion transporting polypeptide mediated active transport and retain in mitochondria by its lipophilic cationic property. As mitochondria are susceptible to hyperthermia and excessive reactive oxygen species, this new PS integrating PTT and PDT treatment exhibits highly efficient phototherapy in multiple cancer cells and animal xenograft models. Furthermore, this targeted PS with NIR imaging property also enables tumors and their margins clearly visualized, providing the potential for precisely imaging‐guided phototherapy and treatment monitoring. This is the first report that a small‐molecule PS integrates both cancer PTT and PDT treatment by targeting mitochondria, significantly increasing the photosensitization. This work may also present a practicable strategy to develop small‐molecule‐based cancer theranostic agents for simultaneous cancer targeting, imaging, and therapy.  相似文献   

3.
Dual phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is regarded as a more effective method for cancer treatment than single PDT or PTT. However, development of single component and near‐infrared (NIR) triggered agents for efficient dual phototherapy remains a challenge. Herein, a simple strategy to develop dual‐functional small‐molecules‐based photosensitizers for combined PDT and PTT treatment is proposed through: 1) finely modulating HOMO–LUMO energy levels to regulate the intersystem crossing (ISC) process for effective singlet oxygen (1O2) generation for PDT; 2) effectively inhibiting fluorescence via strong intramolecular charge transfer (ICT) to maximize the conversion of photo energy to heat for PTT or ISC process for PDT. An acceptor–donor–acceptor (A‐D‐A) structured small molecule (CPDT) is designed and synthesized. The biocompatible nanoparticles, FA‐CNPs, prepared by encapsulating CPDT directly with a folate functionalized amphipathic copolymer, present strong NIR absorption, robust photostability, cancer cell targeting, high photothermal conversion efficiency as well as efficient 1O2 generation under single 808 nm laser irradiation. Furthermore, synergistic PDT and PTT effects of FA‐CNPs in vivo are demonstrated by significant inhibition of tumor growth. The proposed strategy may provide a new approach to reasonably design and develop safe and efficient photosensitizers for dual phototherapy against cancer.  相似文献   

4.
Realizing precise control of the therapeutic process is crucial for maximizing efficacy and minimizing side effects, especially for strategies involving gene therapy (GT). Herein, a multifunctional Prussian blue (PB) nanotheranostic platform is first designed and then loaded with therapeutic plasmid DNA (HSP70‐p53‐GFP) for near‐infrared (NIR) light‐triggered thermo‐controlled synergistic GT/photothermal therapy (PTT). Due to the unique structure of the PB nanocubes, the resulting PB@PEI/HSP70‐p53‐GFP nanoparticles (NPs) exhibit excellent photothermal properties and pronounced tumor‐contrast performance in T1/T2‐weighted magnetic resonance imaging. Both in vitro and in vivo studies demonstrate that mild NIR‐laser irradiation (≈41 °C) activates the HSP70 promoter for tumor suppressor p53‐dependent apoptosis, while strong NIR‐laser irradiation (≈50 °C) induces photothermal ablation for cellular dysregulation and necrosis. Significant synergistic efficacy can be achieved by adjusting the NIR‐laser irradiation (from ≈41 to ≈50 °C), compared to using GT or PTT alone. In addition, in vitro and in vivo toxicity studies demonstrate that PB@PEI/HSP70‐p53‐GFP NPs have good biocompatibility. Therefore, this work provides a promising theranostic approach for controlling combined GT and PTT via the heat‐shock response.  相似文献   

5.
Development of single near‐infrared (NIR) laser triggered phototheranostics for multimodal imaging guided combination therapy is highly desirable but is still a big challenge. Herein, a novel small‐molecule dye DPP‐BT is designed and synthesized, which shows strong absorption in the first NIR window (NIR‐I) and fluorescence emission in the second NIR region (NIR‐II). Such a dye not only acts as a dual‐modal contrast agent for NIR‐II fluorescence and photoacoustic (PA) imaging, but also serves as a combined therapeutic agent for photothermal therapy (PTT) and photodynamic therapy (PDT). The single NIR laser triggered all‐in‐one phototheranostic nanoparticles are constructed by encapsulating the dye DPP‐BT, chemotherapy drug DOX, and natural phase‐change materials with a folic acid functionalized amphiphile. Notably, under NIR laser irradiation, DOX can effectively release from such nanoparticles via NIR‐induced hyperthermia of DPP‐BT. By intravenous injection of such nanoparticles into Hela tumor‐bearing mice, the tumor size and location can be accurately observed via NIR‐II fluorescence/PA dual‐modal imaging. From in vitro and in vivo therapy results, such nanoparticles simultaneously present remarkable antitumor efficacy by PTT/PDT/chemo combination therapy, which is triggered by a single NIR laser. Overall, this work provides an innovative strategy to design and construct all‐in‐one nanoplatforms for clinical phototheranostics.  相似文献   

6.
Iridium(III) complexes are an important group of photosensitizers for photodynamic therapy (PDT). This work constructs a donor–acceptor–donor structure-based iridium(III) complex (IrDAD) with high reactive oxygen species (ROS) generation efficiency, negligible dark toxicity, and synergistic PDT and photothermal therapy (PTT) effect under near-infrared (NIR) stimulation. This complex self-assembles into metallosupramolecular aggregates with a unique aggregation-induced PDT behavior. Compared with conventional iridium(III) photosensitizers, IrDAD not only achieves NIR light deep tissue penetration but also shows highly efficient ROS and heat generation with ROS quantum yield of 14.6% and photothermal conversion efficiency of 27.5%. After conjugation with polyethylene glycol (PEG), IrDAD is formulated to a nanoparticulate system (IrDAD-NPs) with good solubility. In cancer phototherapy, IrDAD-NPs preferentially accumulate in tumor area and display a significant tumor inhibition in vivo, with 96% reduction in tumor volume, and even tumor elimination.  相似文献   

7.
The tumor growth and metastasis is the leading reason for the high mortality of breast cancer. Herein, it is first reported a deep tumor‐penetrating photothermal nanotherapeutics loading a near‐infrared (NIR) probe for potential photothermal therapy (PTT) of tumor growth and metastasis of breast cancer. The NIR probe of 1,1‐dioctadecyl‐3,3,3,3‐tetramethylindotricarbocyanine iodide (DiR), a lipophilicfluorescent carbocyanine dye with strong light‐absorbing capability, is entrapped into the photothermal nanotherapeutics for PTT application. The DiR‐loaded photothermal nanotherapeutics (DPN) is homogeneous nanometer‐sized particles with the mean diameter of 24.5 ± 4.1 nm. Upon 808 nm laser irradiation, DPN presents superior production of thermal energy than free DiR both in vitro and in vivo. The cell proliferation and migration activities of metastatic 4T1 breast cancer cells are obviously inhibited by DPN in combination with NIR irradiation. Moreover, DPN can induce a higher accumulation in tumor and penetrate into the deep interior of tumor tissues. The in vivo PTT measurements indicate that the growth and metastasis of breast cancer are entirely inhibited by a single treatment of DPN with NIR irradiation. Therefore, the deep tumor‐penetrating DPN can provide a promising strategy for PTT of tumor progression and metastasis of breast cancer.  相似文献   

8.
Compared with conventional tumor photothermal therapy (PTT), mild‐temperature PTT brings less damage to normal tissues, but also tumor thermoresistance, introduced by the overexpressed heat shock protein (HSP). A high dose of HSP inhibitor during mild‐temperature PTT might lead to toxic side effects. Glucose oxidase (GOx) consumes glucose, leading to adenosine triphosphate supply restriction and consequent HSP inhibition. Therefore, a combinational use of an HSP inhibitor and GOx not only enhances mild‐temperature PTT but also minimizes the toxicity of the inhibitor. However, a GOx and HSP inhibitor‐encapsulating nanostructure, designed for enhancing its mild‐temperature tumor PTT efficiency, has not been reported. Thermosensitive GOx/indocyanine green/gambogic acid (GA) liposomes (GOIGLs) are reported to enhance the efficiency of mild‐temperature PTT of tumors via synergistic inhibition of tumor HSP by the released GA and GOx, together with another enzyme‐enhanced phototherapy effect. In vitro and in vivo results indicate that this strategy of tumor starvation and phototherapy significantly enhances mild‐temperature tumor PTT efficiency. This strategy could inspire people to design more delicate platforms combining mild‐temperature PTT with other therapeutic methods for more efficient cancer treatment.  相似文献   

9.
Physical therapies including photodynamic therapy (PDT) and photothermal therapy (PTT) can be effective against diseases that are resistant to chemotherapy and remain as incurable malignancies (for example, multiple myeloma). In this study, to enhance the treatment efficacy for multiple myeloma using the synergetic effect brought about by combining PDT and PTT, iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs) with high photostability are developed. They can generate both 1O2 and heat with irradiation from a light‐emitting diode (LED), acting as photosensitizers for PDT/PTT combination treatment. ISP HNPs exhibit the external heavy atom effect, which significantly improves both the quantum yield for 1O2 generation and the light‐to‐heat conversion efficiency. The in vivo fluorescence imaging demonstrates that ISP HNPs, modified with folic acid and polyethylene glycol (FA‐PEG‐ISP HNPs), locally accumulate in the tumor after 18 h of their intravenous injection into tumor‐bearing mice. The LED irradiation on the tumor area of the mice injected with FA‐PEG‐ISP HNPs causes necrosis of the tumor tissues, resulting in the inhibition of tumor growth and an improvement in the survival rate.  相似文献   

10.
Phototheranostic agents in the second near‐infrared (NIR‐II) window (1000–1700 nm) are emerging as a promising theranostic platform for precision medicine due to enhanced penetration depth and minimized tissue exposure. The development of metabolizable NIR‐II nanoagents for imaging‐guided therapy are essential for noninvasive disease diagnosis and precise ablation of tumors. Herein, metabolizable highly absorbing NIR‐II conjugated polymer dots (Pdots) are reported for the first time for photoacoustic imaging guided photothermal therapy (PTT). The unique design of low‐bandgap D‐A π‐conjugated polymer (DPP‐BTzTD) together with modified nanoreprecipitation conditions allows to fabricate NIR‐II absorbing Pdots with ultrasmall (4 nm) particle size. Extensive experimental tests demonstrate that the constructed Pdots exhibit good biocompatibility, excellent photostability, bright photoacoustic signals, and high photothermal conversion efficiency (53%). In addition, upon tail‐vein intravenous injection of tumor‐bearing mice, Pdots also show high‐efficient tumor ablation capability with rapid excretion from the body. In particular, both in vitro and in vivo assays indicate that the Pdots possess remarkable PTT performance under irradiation with a 1064 nm laser with 0.5 W cm?2, which is much lower than its maximum permissible exposure limit of 1 W cm?2. This pilot study thus paves a novel avenue for the development of organic semiconducting nanoagents for future clinical translation.  相似文献   

11.
Photothermal therapy (PTT), as a minimally invasive and highly effective cancer treatment approach, has received widespread attention in recent years. Tremendous effort has been devoted to explore various types of photothermal agents with high near‐infrared (NIR) absorbance for PTT cancer treatment. Despite many exciting progresses in the area, effective yet safe photothermal agents with good biocompatibility and biodegradability are still highly desired. In this work, a new organic PTT agent based on polyethylene glycol (PEG) coated micelle nanoparticles encapsulating a heptamethine indocyanine dye IR825 is developed, showing a strong NIR absorption band and a rather low quantum yield, for in vivo photothermal treatment of cancer. It is found that the IR825–PEG nanoparticles show ultra‐high in vivo tumor uptake after intravenous injection, and appear to be an excellent PTT agent for tumor ablation under a low‐power laser irradiation, without rendering any appreciable toxicity to the treated animals. Compared with inorganic nanomaterials and conjugated polymers being explored in PTT, the NIR‐absorbing micelle nanoparticles presented here may have the least safety concern while showing excellent treatment efficacy, and thus may be a new photothermal agent potentially useful in clinical applications.  相似文献   

12.
Stimuli‐responsive anticancer agents are of particular interest in the field of cancer therapy. Nevertheless, so far stimuli‐responsive photothermal agents have been explored with limited success for cancer photothermal therapy (PTT). In this work, as a proof‐of‐concept, a pH‐responsive photothermal nanoconjugate for enhanced PTT efficacy, in which graphene oxide (GO) with broad NIR absorbance and effective photothermal conversion efficiency is selected as a typical model receptor of fluorescence resonance energy transfer (FRET), and grafted cyanine dye (e.g., Cypate) acts as the donor of near‐infrared fluorescence (NIRF), is reported for the first time. The conjugate of Cypate‐grafted GO exhibits different conformations in aqueous solutions at various pH, which can trigger pH‐dependent FRET effect between GO and Cypate and thus induce pH‐responsive photothermal effect of GO‐Cypate. GO‐Cypate exhibits severe cell damage owing to the enhanced photothermal effect in lysosomes, and thus generate synergistic PTT efficacy with tumor ablation upon photoirradiation after a single‐dose intravenous injection. The photothermal nanoconjugate with broad NIR absorbance as the effective receptor of FRET can smartly convert emitted NIRF energy from donor cyanine dye into additional photothermal effect for improving PTT. These results suggest that the smart nanoconjugate can act as a promising stimuli‐responsive photothermal nanoplatform for cancer therapy.  相似文献   

13.
Tumor hypoxia strengthens tumor resistance to different therapies especially oxygen involved strategies, such as photodynamic therapy (PDT). Herein, the thermal responsive phase change materials (PCM) are utilized to coencapsulate ultrasmall manganese dioxide (sMnO2) and organic photosensitizer IR780 to obtain IR780‐sMnO2‐PCM nanoparticles for controlled tumor hypoxia modulation and enhanced phototherapy. The thermal responsive protective PCM layer can not only prevent IR780 from photodegradation, but also immediately release sMnO2 to decompose endogenous H2O2 and generate enough oxygen for PDT under laser irradiation. Owing to the efficient accumulation of IR780‐sMnO2‐PCM nanoparticles in tumor under intravenous injection as revealed by both florescence imaging and photoacoustic imaging, the tumor hypoxia is greatly relieved. Furthermore, in vivo combined photothermal therapy (PTT) and PDT, IR780‐sMnO2‐PCM nanoparticles, compared to IR780‐PCM nanoparticles, exhibit better performance in inhibiting tumor growth. The results highlight the promise of IR780‐sMnO2‐PCM in controlled modulation of tumor hypoxia to overcome current limitations of cancer therapies.  相似文献   

14.
Gold‐based nanostructures with tunable wavelength of localized surface plasmon resonance (LSPR) in the second near‐infrared (NIR‐II) biowindow receive increasing attention in phototheranostics. In view of limited progress on NIR‐II gold nanostructures, a particular liposome template‐guided route is explored to synthesize novel gold nanoframeworks (AuNFs) with large mesopores (≈40 nm) for multimodal imaging along with therapeutic robustness. The synthesized AuNFs exhibit strong absorbance in NIR‐II region, affording their capacity of NIR‐II photothermal therapy (PTT) and photoacoustic (PA) imaging for deep tumors. Functionalization of AuNFs with hyaluronic acid (HA) endows the targeting capacity for CD44‐overexpressed tumor cells while gatekeeping doxorubicin (DOX) loaded into mesopores. Conjugation of Raman reporter 4‐aminothiophenol (4‐ATP) onto AuNFs yields a surface‐enhanced Raman scattering (SERS) fingerprint for Raman spectroscopy/imaging. In vivo evaluation of HA‐4‐ATP‐AuNFs‐DOX on tumor‐bearing xenografts demonstrates its high efficacy in eradication of solid tumors in NIR‐II under PA–Raman dual image‐guided photo‐chemotherapy. Thus, current AuNFs offer versatile capabilities for phototheranostics.  相似文献   

15.
Nanoparticles (NPs)‐based diagnosis and phototherapy are emerging as the cutting‐edge technologies for detection and treatment of cancer but their applications are still limited since insufficient and heterogeneous NPs accumulation in cancer often causes recurrence. To overcome these limitations, multifunctional microbubbles (MBs) were constructed with 1, 1‐dioctadecyl‐3, 3, 3, 3‐tetramethylindotricarbocyanine iodide (DiR) and porphyrin grafted lipid (PGL). Both DiR and PGL self‐assembled as microbubbles, the as‐designed PGL‐DiR MBs possess remarkably high drug loading contents (5.8% PGL and 10.38% DiR) and stable co‐delivery drug combinations. In vivo experiments showed PGL‐DiR MBs could serve as an excellent ultrasound contrast agent to enhance ultrasound imaging greatly for identifying the location and size of the tumors. Upon exposure to ultrasound, in situ conversion of PGL‐DiR MBs into nanoparticles resulted in a remarkable increase in fluorescence intensity (~5 folds) in tumor compared with PGL‐DiR NPs, validating the enhanced tumor accumulation and cellular uptake of therapeutic agents. PGL‐DiR MBs showed complete tumor ablation without recurrence in vivo, while PGL‐DiR NPs showed only 72.6% tumor growth inhibition at the same dose. We believe that PGL‐DiR MBs will soon reach their full potential as an important class of phototherapeutic formulations and will contribute to remarkable advances in cancer treatments.  相似文献   

16.
Oxygen plays an essential role in the photodynamic therapy (PDT) of cancer. However, hypoxia inside tumors severely attenuates the therapeutic effect of PDT. To address this issue, a novel strategy is reported for cutting off the oxygen consumption pathway by using sub‐50 nm dual‐drug nanoparticles (NPs) to attenuate the hypoxia‐induced resistance to PDT and to enhance PDT efficiency. Specifically, dual‐drug NPs that encapsulate photosensitizer (PS) verteporfin (VER) and oxygen‐regulator atovaquone (ATO) with sub‐50 nm diameters can penetrate deep into the interior regions of tumors and effectively deliver dual‐drug into tumor tissues. Then, ATO released from NPs efficiently reduce in advance cellular oxygen consumption by inhibition of mitochondria respiratory chain and further heighten VER to generate greater amounts of 1O2 in hypoxic tumor. As a result, accompanied with the upregulated oxygen content in tumor cells and laser irradiation, the dual‐drug NPs exhibit powerful and overall antitumor PDT effects both in vitro and in vivo, and even tumor elimination. This study presents a potential appealing clinical strategy in photodynamic eradication of tumors.  相似文献   

17.
A photothermal bacterium (PTB) is reported for tumor‐targeted photothermal therapy (PTT) by using facultative anaerobic bacterium Shewanella oneidensis MR‐1 (S. oneidensis MR‐1) to biomineralize palladium nanoparticles (Pd NPs) on its surface without affecting bacterial activity. It is found that PTB possesses superior photothermal property in near infrared (NIR) regions, as well as preferential tumor‐targeting capacity. Zeolitic imidazole frameworks‐90 (ZIF‐90) encapsulating photosensitizer methylene blue (MB) are hybridized on the surface of living PTB to further enhance PTT efficacy. MB‐encapsulated ZIF‐90 (ZIF‐90/MB) can selectively release MB at mitochondria and cause mitochondrial dysfunction by producing singlet oxygen (1O2) under light illumination. Mitochondrial dysfunction further contributes to adenosine triphosphate (ATP) synthesis inhibition and heat shock proteins (HSPs) down‐regulated expression. The PTB‐based therapeutic platform of PTB@ZIF‐90/MB demonstrated here will find great potential to overcome the challenges of tumor targeting and tumor heat tolerance in PTT.  相似文献   

18.
Photothermal therapy (PTT) combined with chemotherapy, a promising strategy for breast cancer treatment, has a high potential to control drug release, reduce multidrug resistance, and improve therapeutic efficacy. The challenge is how to realize tumor ablation in deeper tissue and NIR-controlled drug delivery. Herein, tumor acidity and near-infrared light (NIR) responsive folic acid (FA) functionalized polydopamine (DPA) nanoparticles (NPs) are developed for doxorubicin (DOX) and epigallocatechin-3-gallate (EGCG) dual delivery. With the assistance of NIR, the cellular uptake of DOX-EGCG/DPA-FA NPs is about three- to sixfold higher when compared with the free DOX group and the control group without NIR irradiation. Moreover, biodistribution study in vivo indicates that DPA-FA NPs can enhance tumoral accumulation, penetration, retention of drugs, and display a ≈ 4- and 19-fold higher intra-tumoral distribution than that of the DPA NPs and free drug groups at 24 h postinjection. Furthermore, 60% of breast cancer-bearing mice survive over 70 days in the DOX-EGCG/DPA-FA NPs group. Additionally, DOX-EGCG/DPA-FA NPs can effectively boost therapeutic efficacy by inducing significant suppression of tumor growth and angiogenesis, and enhancement of apoptosis and necrosis of breast cancer cells. Taken together, DOX-EGCG/DPA-FA NPs may have potential applications as a useful nanoscale vector for enhanced cancer therapy.  相似文献   

19.
Photothermal therapy (PTT) is of particular importance as a highly potent therapeutic modality in cancer therapy. However, a critical challenge still remains in the exploration of highly effective strategy to maximize the PTT efficiency due to tumor thermoresistance and thus frequent tumor recurrence. Here, a rational fabrication of the micelles that can achieve mutual synergy of PTT and molecularly targeted therapy (MTT) for tumor ablation is reported. The micelles generate both distinct photothermal effect from Cypate through enhanced photothermal conversion efficiency and pH‐dependent drug release. The micelles further exhibit effective cytoplasmic translocation of 17‐allylamino‐17‐demethoxygeldanamycin (17AAG) through reactive oxygen species mediated lysosomal disruption caused by Cypate under irradiation. Translocated 17AAG specifically bind with heat shock protein 90 (HSP90), thereby inhibiting antiapoptotic p‐ERK1/2 proteins for producing preferable MTT efficiency through early apoptosis. Meanwhile, translocated 17AAG molecules further block stressfully overexpressed HSP90 under irradiation and thus inhibit the overexpression of p‐Akt for achieving the reduced thermoresistance of tumor cells, thus promoting the PTT efficiency through boosting both early and late apoptosis of Cypate. Moreover, the micelles possess enhanced resistance to photobleaching, preferable cellular uptake, and effective tumor accumulation, thus facilitating mutually synergistic PTT/MTT treatments with tumor ablation. These findings represent a general approach for potent cancer therapy.  相似文献   

20.
Optimal nanosized drug delivery systems (NDDS) require long blood circulation and controlled drug release at target lesions for efficient anticancer therapy. Red blood cell (RBC) membrane‐camouflaged nanoparticles (NPs) can integrate flexibility of synergetic materials and highly functionality of RBC membrane, endowed with many unique advantages for drug delivery. Here, new near‐infrared (NIR)‐responsive RBC membrane‐mimetic NPs with NIR‐activated cellular uptake and controlled drug release for treating metastatic breast cancer are reported. An NIR dye is inserted in RBC membrane shells, and the thermoresponsive lipid is employed to the paclitaxel (PTX)‐loaded polymeric cores to fabricate the RBC‐inspired NPs. The fluorescence of dye in the NPs can be used for in vivo tumor imaging with an elongated circulating halftime that is 12.3‐folder higher than that of the free dye. Under the NIR laser stimuli, the tumor cellular uptake of NPs is significantly enhanced to 2.1‐fold higher than that without irradiation. The structure of the RBC‐mimetic NPs can be destroyed by the light‐induced hyperthermia, triggered rapid PTX release (45% in 30 min). These RBC‐mimetic NPs provide a synergetic chemophotothermal therapy, completely inhibited the growth of the primary tumor, and suppress over 98% of lung metastasis in vivo, suggesting it to be an ideal NDDS to fight against metastatic breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号