首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 2′,7′‐diarylspiro(cyclopropane‐1,9′‐fluorene) derivatives are efficiently synthesized and characterized to determine the reason for the “green‐light” emission of these compounds. These compounds exhibit bright‐violet to blue photoluminescence (PL) (λPLmax = 353–419 nm) with excellent PL quantum efficiencies (ΦPL = 83–100 %) in solution and show high thermal stabilities (Td = 267–474 °C). The variation of the optical properties of these molecules in the solid state depends on the different stacking modes of these compounds containing different substituents, which are revealed by crystallographic analysis. CH…π hydrogen bonds instead of intermolecular π–π interactions act as the driving force between adjacent fluorenes, even though a very small dialkyl group (cyclopropane) is introduced at the C‐9 position of fluorene. The crosslike molecular stacking efficiently reduces the energy transfer between the herring‐like aggregates and therefore results in the absence of a “green‐light” emission tail. In order to determine the cause of the “green‐light” emission tails, the fluorescence spectra of the films annealed in N2 or in air are recorded. Broad green‐light emission tails were observed for the films annealed in air, which might be caused by fluorenone defects generated during processing or during the course of the photophysical analysis by reaction with residual oxygen.  相似文献   

2.
A simple one‐pot approach based on the “benzyl alcohol route” is used for the preparation of benzoate‐ and biphenolate‐capped zirconia and, benzoate‐capped Eu‐doped zirconia nanoparticles. Powder X‐ray diffraction studies and high‐ resolution transmission electron microscopy (HR‐TEM) showed that the nanoparticles present high crystallinity and uniform particle sizes ranging from 3 to 4 nm. FT‐IR and solid state NMR (SS‐NMR) studies revealed that the nanoparticles are coated with a large amount of organic species when the reaction temperature is above 300 °C. It was found that the alcohol used as solvent is oxidized at the surface of the nanoparticles to the respective carboxylic acid which acts as a stabilizer, controlling the nanoparticles growth. The optical properties of these hybrid nanoparticles were studied by room and low (12K) temperature photoluminescence spectroscopy, time‐resolved spectroscopy and absolute emission quantum yield. The as‐synthesized benzoate‐ and biphenolate‐capped nanoparticles exhibit interesting emission properties in the UV and blue spectral regions together with values of emission quantum yields much higher than those reported for zirconia nanoparticles of similar size. The photoluminescent properties were attributed to a cooperative effect of the capping ligands and the defects associated to the ZrO2 nanoparticles. Due to the overlapping of the various emission components involved (i.e., the emission of europium(III) intra‐4f6 transitions, defects in the zirconia and capping ligands) a tunable emission color ranging from purplish‐pink to greenish‐blue could be obtained for the europium‐doped zirconia nanoparticles by simply selecting different excitation wavelengths.  相似文献   

3.
The charge generation and separation process in transition metal oxide (TMO)‐based interconnectors for tandem organic light‐emitting diodes (OLEDs) is explored using data on electrical and spectral emission properties, interface energetics, and capacitance characteristics. The TMO‐based interconnector is composed of MoO3 and cesium azide (CsN3)‐doped 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) layers, where CsN3 is employed to replace the reactive metals as an n‐dopant due to its air stability and low deposition temperature. Experimental evidences identify that spontaneous electron transfer occurs in a vacuum‐deposited MoO3 layer from various defect states to the conduction band via thermal diffusion. The external electric‐field induces the charge separation through tunneling of generated electrons and holes from MoO3 into the neighboring CsN3‐doped BPhen and hole‐transporting layers, respectively. Moreover, the impacts of constituent materials on the functional effectiveness of TMO‐based interconnectors and their influences on carrier recombination processes for light emission have also been addressed.  相似文献   

4.
Ruddlesden–Popper perovskite, (PEA)2PbBr4 (PEA = C8H9NH3), is a steady and inexpensive material with a broad bandgap and a narrow‐band emission. These features make it a potential candidate for deep‐blue light‐emitting diodes (LEDs). However, due to the weak exciton binding energy, LEDs based on the perovskite thin films usually possess a very low external quantum efficiency (EQE) of <0.03%. Here, for the first time, the construction of high‐performance deep‐blue LEDs based on 2D (PEA)2PbBr4 nanoplates (NPs) is demonstrated. The as‐fabricated (PEA)2PbBr4 NPs film shows a deep‐blue emission at 410 nm with excellent stability under ambient conditions. Impressively, LEDs based on the (PEA)2PbBr4 NPs film deliver a bright deep‐blue emission with a maximum luminance of 147.6 cd m?2 and a high EQE up to 0.31%, which represents the most efficient and brightest perovskite LEDs operating at deep‐blue wavelengths. Furthermore, the LEDs retain over 80% of their efficiencies for over 1350 min under ≈60% relative humidity. The steady and bright deep‐blue LEDs can be used as an excitation light source to realize white light emission, which shows the potential for light communication. The work provides scope for developing perovskite into efficient and deep‐blue LEDs for low‐cost light source and light communication.  相似文献   

5.
Aggregation‐induced emission (AIE) materials are highly attractive because of their excellent properties of high efficiency emission in nondoped organic light‐emitting diodes (OLEDs). Therefore, a deep understanding of the working mechanisms, further improving the electroluminescence (EL) efficiency of the resulting AIE‐based OLEDs, is necessary. Herein, the conversion process from higher energy triplet state (T2) to the lowest singlet state (SS1) is found in OLEDs based on a blue AIE material, 4′‐(4‐(diphenylamino)phenyl)‐5′‐phenyl‐[1,1′:2′,1′′‐terphenyl]‐4‐carbonitrile (TPB‐AC), obviously relating to the device efficiency, by magneto‐EL (MEL) measurements. A special line shape with rise at low field and reduction at high field is observed. The phenomenon is further clarified by theoretical calculations, temperature‐dependent MELs, and transient photoluminescence emission properties. On the basis of the T2‐S1 conversion process, the EL performances of the blue OLEDs based on TPB‐AC are further enhanced by introducing a phosphorescence doping emitter in the emitting layer, which effectively regulates the excitons on TPB‐AC molecules. The maximum external quantum efficiency (EQE) reaches 7.93% and the EQE keeps 7.57% at the luminance of 1000 cd m?2. This work establishes a physical insight for designing high‐performance AIE materials and devices in the future.  相似文献   

6.
Highly ordered arrays of submicrometer‐sized coaxial cables composed of submicrometer‐sized C60 and C70 tubes filled with Ni nanowires are successfully prepared by combining a sol–gel method with an electrodeposition process. The wall thickness of the submicrometer‐sized tubes can be adjusted by the concentration of fullerenes and the immersion time. The thermal stability of the submicrometer‐sized C60 tubes is studied by Raman spectroscopy and it is found that these structures can be easily decomposed to form carbon nanotubes at relatively low temperatures (above 573 K) in an alumina template. These novel coaxial cable structures have been characterized by transmission electron microscopy (TEM), high‐resolution TEM (HRTEM), scanning electron microscopy (SEM), field‐emission SEM (FESEM), Raman spectroscopy, elemental mapping, energy dispersive X‐ray (EDX) spectroscopy, X‐ray diffraction (XRD), vibrating sample magnetometer (VSM) experiments, and superconducting quantum interference device (SQUID) measurements. Magnetic measurements show that these submicrometer‐sized cables exhibit enhanced ferromagnetic behavior as compared to bulk nickel. Moreover, submicrometer‐sized C70/Ni cables show uniaxial magnetic anisotropy with the easy magnetic axis being parallel to the long axis of the Ni nanowires. C70/Ni cables also exhibit a new magnetic transition at ca. 10 K in the magnetization–temperature (M–T) curve, which is not observed for the analogous C60/Ni structures. The origin of this transition is not yet clear, but might be related to interactions between the Ni nanowires and C70 molecules. There is no preferred magnetization axis in submicrometer‐sized C60/Ni cables, which implies that the Ni nanocrystals have different packing modes in the two composites. These different crystalline packing modes lead to different magnetic anisotropy in the two composites, although the Ni nanocrystals have the same face‐centered cubic (fcc) structure in both cases.  相似文献   

7.
Two blue‐emitting cationic iridium complexes with 2‐(1H‐pyrazol‐1‐yl)pyridine (pzpy) as the ancillary ligands, namely, [Ir(ppy)2(pzpy)]PF6 and [Ir(dfppy)2(pzpy)]PF6 (ppy is 2‐phenylpyridine, dfppy is 2‐(2,4‐difluorophenyl) pyridine, and PF6? is hexafluorophosphate), have been prepared, and their photophysical and electrochemical properties have been investigated. In CH3CN solutions, [Ir(ppy)2(pzpy)]PF6 emits blue‐green light (475 nm), which is blue‐shifted by more than 100 nm with respect to the typical cationic iridium complex [Ir(ppy)2(dtb‐bpy)]PF6 (dtb‐bpy is 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine); [Ir(dfppy)2(pzpy)]PF6 with fluorine‐substituted cyclometalated ligands shows further blue‐shifted light emission (451 nm). Quantum chemical calculations reveal that the emissions are mainly from the ligand‐centered 3ππ* states of the cyclometalated ligands (ppy or dfppy). Light‐emitting electrochemical cells (LECs) based on [Ir(ppy)2(pzpy)]PF6 gave green‐blue electroluminescence (486 nm) and had a relatively high efficiency of 4.3 cd A?1 when an ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate was added into the light‐emitting layer. LECs based on [Ir(dfppy)2(pzpy)]PF6 gave blue electroluminescence (460 nm) with CIE (Commission Internationale de L'Eclairage) coordinates of (0.20, 0.28), which is the bluest light emission for iTMCs‐based LECs reported so far. Our work suggests that using diimine ancillary ligands involving electron‐donating nitrogen atoms (like pzpy) is an efficient strategy to turn the light emission of cationic iridium complexes to the blue region.  相似文献   

8.
Metal‐organic vesicular and toroid nanostructures of Zn(OPE)·2H2O are achieved by coordination‐directed self‐assembly of oligo‐phenyleneethynylenedicarboxylic acid (OPEA) as a linker with Zn(OAc)2 by controlling the reaction parameters. Self‐assembled nanostructures are characterized by powder X‐ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and adsorption study. The amphiphilic nature of the coordination‐polymer with long alkyl chains renders different soft vesicular and toroidal nanostructures. The permanent porosity of the framework is established by gas adsorption study. Highly luminescent 3D porous framework is exploited for Froster's resonance energy transfer (FRET) by encapsulation of a suitable cationic dye ( DSMP ) which shows efficient funneling of excitation energy. These results demonstrate the dynamic and soft nature of the MOF, resulting in unprecedented vesicular and toroidal nanostructures with efficient light harvesting applications.  相似文献   

9.
Through first‐principles calculations, it is found that two lattice‐matched halide double‐perovskites, Cs2NaBiBr6 and Cs2AgBiBr6, have a type‐I band alignment and can form highly miscible alloys in which the disordering makes the bandgaps become direct and activates the direct transition from the valence to conduction band edge, leading to a strong optical absorption and high radiative recombination rate. The bandgaps of the alloys are tunable in a wide range of 1.93–3.24 eV, while the lattice constants remain unchanged. This advantage inspires the design of a coherent crystalline matrix based on Cs2(Na,Ag)BiBr6 alloys, in which the Ag‐rich and narrower‐bandgap regions are embedded in the Na‐rich and wide‐bandgap region with lattice‐matched and coherent interfaces. The type‐I band alignment drives the photogenerated excitons into the narrower‐bandgap Ag‐rich regions, so the regions become light‐emitting centers with a high photoluminescence quantum yield (PLQY). The bandgaps of the Ag‐rich regions are tunable, so the color of emitted light can be adjusted, making a broadband emission possible. Such kind of coherent crystalline matrix with high‐PLQY and broadband emission can also be fabricated based on the alloys of other lattice‐matched halide double‐perovskites, demonstrating the flexibility of band structure engineering in the coherent heterostructures of various halide double‐perovskites.  相似文献   

10.
Nanocrystalline Ln3+‐doped YF3 phosphors have been synthesized via a facile sonochemistry‐assisted hydrothermal route. YF3 nanoparticles are demonstrated to be a good host material for different lanthanides. Varying the dopants leads to different optical properties. In particular, the feasibility of inducing red, green, and especially blue emission in the Yb3+/Er3+ co‐doped YF3 sample by up‐conversion excitation in the near‐infrared region is demonstrated. Such unusually strong 411 nm blue up‐conversion emission has seldom been reported in other Yb3+/Er3+‐doped systems. The up‐conversion mechanisms have been analyzed.  相似文献   

11.
Colloidal quantum‐dot light‐emitting diodes (QDLEDs) with the HfO2/SiO2‐distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2‐in. wafer‐scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross‐contamination and self‐assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high‐quality display technology.  相似文献   

12.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   

13.
A simple catalysis‐free approach that utilises a gas–solid reaction for the synthesis of large‐scale single‐crystalline PrB6 nanorods using Pr and BCl3 as starting materials is demonstrated. The nanorods exhibit a low turn‐on electric field (2.80 V µ‐b;m?1 at 10 µ‐b;A cm?2), a low threshold electric field (6.99 V µ‐b;m?1 at 1 mA cm?2), and a high current density (1.2 mA cm?2 at 7.35 V µ‐b;m?1) at room temperature (RT). The turn‐on and threshold electric field are found to decrease clearly from 2.80 to 0.95 and 6.99 to 3.55 V µ‐b;m?1, respectively, while the emission current density increases significantly from 1.2 to 13.8 mA cm?2 (at 7.35 V µ‐b;m?1) with an increase in the ambient temperature from RT to 623 K. The field enhancement factor, emission current density, and the dependence of the effective work function with temperature are investigated. The possible mechanism of the temperature‐dependent emission from PrB6 nanorods is discussed.  相似文献   

14.
Monolayer 2D transition metal dichalcogenides (TMDCs) have shown great promise for optoelectronic applications due to their direct bandgaps and unique physical properties. In particular, they can possess photoluminescence quantum yields (PL QY) approaching unity at the ultimate thickness limit, making their application in light‐emitting devices highly promising. Here, large‐area WS2 grown via chemical vapor deposition is synthesized and characterized for visible (red) light‐emitting devices. Detail optical characterization of the synthesized films is performed, which show peak PL QY as high as 12%. Electrically pumped emission from the synthetic WS2 is achieved utilizing a transient‐mode electroluminescence device structure, which consists of a single metal–semiconductor contact and alternating gate fields to achieve bipolar emission. Utilizing this aforementioned structure, a centimeter‐scale ( ≈ 0.5 cm2) visible (640 nm) display is demonstrated, fabricated using TMDCs to showcase the potential of this material system for display applications.  相似文献   

15.
The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF4 (dnbp = 2,9‐di‐n‐butylphenanthroline, DPEPhos = bis[2‐(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long‐life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non‐equilibrated triplet ligand center (3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero‐zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton‐blocking layer (EBL), a [Cu(dnbp)(DPEPhos)]BF4 based organic light‐emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy)3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb]2 (dppb = 1,2‐bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero‐zero energy of 2.76 eV as the predominant population excited state.  相似文献   

16.
A dual‐phase all‐inorganic composite CsPbBr3‐CsPb2Br5 is developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m–2, with current density (CE) of ≈8.98 cd A–1 and external quantum efficiency (EQE) of ≈2.21%, respectively. The parasite of secondary phase CsPb2Br5 nanoparticles on the cubic CsPbBr3 nanocrystals could enhance the current efficiency by reducing diffusion length of excitons on one side, and decrease the trap density in the band gap on the other side. In addition, the introduction of CsPb2Br5 nanoparticles could increase the ionic conductivity by reducing the barrier against the electronic and ionic transport, and improve emission lifetime by decreasing nonradiative energy transfer to the trap states via controlling the trap density. The dual‐phase all‐inorganic CsPbBr3‐CsPb2Br5 composite nanocrystals present a new route of perovskite material for advanced light emission applications.  相似文献   

17.
In order to transfer the potential for the high efficiencies seen for Cu(In,Ga)Se2 (CIGSe) thin films from co‐evaporation processes to cheaper large‐scale deposition techniques, a more intricate understanding of the CIGSe growth process for high‐quality material is required. Hence, the growth mechanism for chalcopyrite‐type thin films when varying the Cu content during a multi‐stage deposition process is studied. Break‐off experiments help to understand the intermediate growth stages of the thin‐film formation. The film structure and morphology are studied by X‐ray diffraction and scanning electron microscopy. The different phases at the film surface are identified by Raman spectroscopy. Depth‐resolved compositional analysis is carried out via glow discharge optical emission spectrometry. The experimental results imply an affinity of Na for material phases with a Cu‐poor composition, affirming a possible interaction of sodium with Cu vacancies mainly via In(Ga)Cu antisite defects. An efficiency of 12.7% for vacancy compound‐based devices is obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

19.
The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications.  相似文献   

20.
Despite the excellent photoelectronic properties of the all‐inorganic cesium lead iodide (CsPbI3) perovskite, which does not contain volatile and hygroscopic organic components, only a few CsPbI3 devices are developed mainly owing to the frequent formation of an undesirable yellow δ‐phase at room temperature. Herein, it is demonstrated that a small quantity of poly(ethylene oxide) (PEO) added to the precursor solution effectively inhibits the formation of the yellow δ‐phase during film preparation, and promotes the development of a black α‐phase at a low crystallization temperature. A systematic study reveals that a thin, dense, pinhole‐free CsPbI3 film is produced in the α‐phase and is stabilized with PEO that effectively reduces the grain size during crystallization. A thin α‐phase CsPbI3 film with excellent photoluminescence is successfully employed in a light‐emitting diode with an inverted configuration of glass substrate/indium tin oxide/zinc oxide/poly(ethyleneimine)/α‐CsPbI3/poly(4‐butylphenyl‐diphenyl‐amine)/WO3/Al, yielding the characteristic red emission of the perovskite film at 695 nm with brightness, external quantum efficiency, and emission band width of ≈101 cd m?2, 1.12%, and 32 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号