首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

2.
Single‐crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide‐nanowire field‐effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the “on‐currents” achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical‐gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all‐solid‐state FETs with outstanding performance; the field‐effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single‐nanowire transistor are 62 cm2/Vs, 107, 155 μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically‐gated field‐effect transistor (EG FET) devices is supported by their long‐term stability in air. Moreover, due to the good conductivity (≈10?2 S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut‐off frequency in excess of 100 kHz is measured for in‐plane FETs with large gate‐channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top‐gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all‐solution processed and high throughput techniques.  相似文献   

3.
We report on our latest improvements in organic field‐effect transistors (OFETs) using ultra‐thin anodized gate insulators. Anodization of titanium (Ti) is an extremely cheap and simple technique to obtain high‐quality, very thin (~ 7.5 nm), pinhole‐free, and robust gate insulators for OFETs. The anodized insulators have been tested in transistors using pentacene and poly(triarylamine) (PTAA) as active layers. The fabricated devices display low‐threshold, normally “off” OFETs with negligible hysteresis, good carrier mobility, high gate capacitance, and exceptionally low inverse subthreshold slope. Device performance is improved via chemical modification of TiO2 with an octadecyltrichlorosilane (OTS) self‐assembled monolayer (SAM). As the result of this combination of favorable properties, we have demonstrated OFETs that can be operated with voltages well below 1 V.  相似文献   

4.
Organic thin‐film transistors (OTFTs) can provide an effective platform to develop flexible pressure sensors in wearable electronics due to their good signal amplification function. However, it is particularly difficult to realize OTFT‐based pressure sensors with both low‐voltage operation and high sensitivity. Here, controllable polyelectrolyte composites based on poly(ethylene glycol) (PEG) and polyacrylic acid (PAA) are developed as a type of high‐capacitance dielectrics for flexible OTFTs and ultrasensitive pressure sensors with sub‐1 V operation. Flexible OTFTs using the PAA:PEG dielectrics show good universality and greatly enhanced electrical performance under a much smaller operating voltage of ?0.7 V than those with a pristine PAA dielectric. The low‐voltage OTFTs also exhibit excellent flexibility and bending stability under various bending radii and long cycles. Flexible OTFT‐based pressure sensors with low‐voltage operation and superhigh sensitivity are demonstrated by using a suspended semiconductor/dielectric/gate structure in combination with the PAA:PEG dielectric. The sensors deliver a record high sensitivity of 452.7 kPa?1 under a low‐voltage of ?0.7 V, and excellent operating stability over 5000 cycles. The OTFT sensors can be built into a wearable sensor array for spatial pressure mapping, which shows a bright potential in flexible electronics such as wearable devices and smart skins.  相似文献   

5.
Enhancing the device performance of single crystal organic field effect transistors (OFETs) requires both optimized engineering of efficient injection of the carriers through the contact and improvement of the dielectric interface for reduction of traps and scattering centers. Since the accumulation and flow of charge carriers in operating organic FETs takes place in the first few layers of the semiconductor next to the dielectric, the mobility can be easily degraded by surface roughness, charge traps, and foreign molecules at the interface. Here, a novel structure for high‐performance rubrene OFETs is demonstrated that uses graphene and hexagonal boron nitride (hBN) as the contacting electrodes and gate dielectric layer, respectively. These hetero‐stacked OFETs are fabricated by lithography‐free dry‐transfer method that allows the transfer of graphene and hBN on top of an organic single crystal, forming atomically sharp interfaces and efficient charge carrier‐injection electrodes without damage or contamination. The resulting heterostructured OFETs exhibit both high mobility and low operating gate voltage, opening up new strategy to make high‐performance OFETs and great potential for flexible electronics.  相似文献   

6.
Organic field‐effect transistors (OFETs) have attracted much attention for the next‐generation electronics. Despite of the rapid developments of OFETs, operational stability is a big challenge for their commercial applications. Moreover, the actual mechanism behind the degradation of electron transport is still poorly understood. Here, the electrical characteristics of poly{[N,N‐9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)} (P(NDI2OD‐T2)) thin‐film transistors (TFTs) as a function of semiconductor/dielectric interfacial property and environment are systematically investigated, in particular, how the copresence of water, oxygen, and active hydrogen on the surface of dielectric leads to a sharp drop‐off in threshold voltage. Evidence is found that an acid–base neutralization reaction occurring at the interface, as a combined effect of the chemical instability of dielectrics and the electrochemical instability of organic semiconductors, contributes to the significant electron trapping on the interface of P(NDI2OD‐T2) TFTs. Two strategies, increasing the intrinsic electrochemical stability of semiconductor and decreasing the chemical reactivity of gate dielectric, are demonstrated to effectively suppress the reaction and thus improve the operational stability of n‐type OFETs. The results provide an alternative degradation pathway to better understand the charge transport instability in n‐type OFETs, which is advantageous to construct high‐performance OFETs with long‐term stability.  相似文献   

7.
Nanoscale hybrid dielectrics composed of an ultra‐thin polymeric low‐κ bottom layer and an ultra‐thin high‐κ oxide top layer, with high dielectric strength and capacitances up to 0.25 μFcm?2, compatible with low‐voltage, low‐power, organic electronic circuits are demonstrated. An efficient and reliable fabrication process, with 100% yield achieved on lab‐scale arrays, is demonstrated by means of pulsed laser deposition (PLD) for the fast growth of the oxide layer. With this strategy, high capacitance top gate (TG), n‐type and p‐type organic field effect transistors (OFETs) with high mobility, low leakage currents, and low subthreshold slopes are realized and employed in complementary‐like inverters, exhibiting ideal switching for supply voltages as low as 2 V. Importantly, the hybrid double‐layer allows for a neat decoupling between the need for a high capacitance, guaranteed by the nanoscale thickness of the double layer, and for an optimized semiconductor–dielectric interface, a crucial point in enabling high mobility OFETs, thanks to the low‐κ polymeric dielectric layer in direct contact with the polymer semiconductor. It is shown that such decoupling can be achieved already with a polymer dielectric as thin as 10 nm when the top oxide is deposited by PLD. This paves the way for a very versatile implementation of the proposed approach for the scaling of the operating voltages of TG OFETs with very low level of dielectric leakage currents to the fabrication of low‐voltage organic electronics with drastically reduced power consumption.  相似文献   

8.
Films made of 2D networks of single‐walled carbon nanotubes (SWNTs) are one of the most promising active‐channel materials for field‐effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high‐speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT‐containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT‐network FET is presented, which involves the non‐volatile polarization of a ferroelectric poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) gate insulator. A top‐gate FET with a solution‐processed SWNT‐network exhibits significant suppression of the hysteresis when the gate‐voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m?1). These near‐hysteresis‐free characteristics are believed to be due to the characteristic hysteresis of the P(VDF‐TrFE), resulting from its non‐volatile polarization, which makes effective compensation for the current hysteresis of the SWNT‐network FETs. The onset voltage for hysteresis‐minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis‐free devices with gate voltages down to a few volts.  相似文献   

9.
Electrolyte‐gated organic field‐effect transistors (OFETs) hold promise for robust printed electronics operating at low voltages. The polarization mechanism of thin solid electrolyte films, the gate insulator in such OFETs, is still unclear and appears to limit the transient current characteristics of the transistors. Here, the polarization response of a thin proton membrane, a poly(styrenesulfonic acid) film, is controlled by varying the relative humidity. The formation of the conducting transistor channel follows the polarization of the polyelectrolyte, such that the drain transient current characteristics versus the time are rationalized by three different polarization mechanisms: the dipolar relaxation at high frequencies, the ionic relaxation (migration) at intermediate frequencies, and the electric double‐layer formation at the polyelectrolyte interfaces at low frequencies. The electric double layers of polyelectrolyte capacitors are formed in ~1 µs at humid conditions and an effective capacitance per area of 10 µF cm?2 is obtained at 1 MHz, thus suggesting that this class of OFETs might operate at up to 1 MHz at 1 V.  相似文献   

10.
In organic electronics solution‐processable n‐channel field‐effect transistors (FETs) matching the parameters of the best p‐channel FETs are needed. Progress toward the fabrication of such devices is strongly impeded by a limited number of suitable organic semiconductors as well as by the lack of processing techniques that enable strict control of the supramolecular organization in the deposited layer. Here, the use of N,N′‐bis(4‐n‐butylphenyl)‐1,4,5,8‐naphthalenetetracarboxylic‐1,4:5,8‐bisimide (NBI‐4‐n‐BuPh) for fabrication of n‐channel FETs is described. The unidirectionally oriented crystalline layers of NBI‐4‐n‐BuPh are obtained by the zone‐casting method under ambient conditions. Due to the bottom‐contact, top‐gate configuration used, the gate dielectric, Parylene C, also acts as a protective layer. This, together with a sufficiently low LUMO level of NBI‐4‐n‐BuPh allows the fabrication and operation of these novel n‐channel transistors under ambient conditions. The high order of the NBI‐4‐n‐BuPh molecules in the zone‐cast layer and high purity of the gate dielectric yield good performance of the transistors.  相似文献   

11.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

12.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.  相似文献   

13.
Revealing the intrinsic electrical properties is the basis of understanding new functional materials and developing their applications. However, in nonideal field‐effect transistors (FETs), conventional current–voltage characterizations do not accurately probe charge transport, particularly for newly developed semiconductors. Here, a generalized gated four‐probe (G‐GFP) technique is developed, which detects dynamic changes in carrier accumulation and transport. The technique is suitable for exploring the intrinsic properties of semiconductors in FETs with arbitrary contacts and in any operational regimes above the threshold. Application to simulated transistors confirms its accuracy in probing the evolution of channel potential, drift field, and gate‐dependent carrier mobility for devices with a contact‐limited operation and disordered semiconductors. Comparative experiments are performed based on FETs with various materials, device structures, and operational temperatures. The G‐GFP technique proves to exclude the various injection properties, to detect in situ how carriers are accumulated, and to clarify carrier mobility of the semiconductors. In particular, the well‐known “double‐slope” features in the current–voltage relations are controllably generated and their origins are identified. The approach could be used to explore electronic properties of newly developed materials such as organic, oxide, or 2D semiconductors.  相似文献   

14.
The interface between the organic semiconductor and dielectric plays an important role in determining the device performance of organic field‐effect transistors (OFETs). Although self‐assembled monolayers (SAMs) made from organosilanes have been widely used for dielectric modification to improve the device performance of OFETs, they suffer from incontinuous and lack uniform coverage of the dielectric layer. Here, it is reported that by introduction of a solution‐processed organozinc compound as a dielectric modification layer between the dielectric and the silane SAM, improved surface morphology and reduced surface polarity can be achieved. The organozinc compound originates from the reaction between diethylzinc and the cyclohexanone solvent, which leads to formation of zinc carboxylates. Being annealed at different temperatures, organozinc compound exists in various forms in the solid films. With organozinc modification, p‐type polymer FETs show a high charge carrier mobility that is about two‐fold larger than a control device that does not contain the organozinc compound, both for devices with a positive threshold voltage and for those with a negative one. After organozinc compound modification, the threshold voltage of polymer FETs can either be altered to approach zero or remain unchanged depending on positive or negative threshold voltage they have.  相似文献   

15.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

16.
The concept of using ion conducting membranes (50–150 μm thick) for gating low‐voltage (1 V) organic field‐effect transistors (OFETs) is attractive due to its low‐cost and large‐area manufacturing capabilities. Furthermore, the membranes can be tailor‐made to be ion conducting in any desired way or pattern. For the electrolyte gated OFETs in general, the key to low‐voltage operation is the electrolyte “insulator” (the membrane) that provides a high effective capacitance due to ionic polarization within the insulator. Hydrous ion conducting membranes are easy to process and readily available. However, the role of the water in combination with the polymeric semiconductor has not yet been fully clarified. In this work electrical and optical techniques are utilized to carefully monitor the electrolyte/semiconductor interface in an ion conducting membrane based OFET. The main findings are that 1) moisture plays a major part in the transistor operation and careful control of both the ambient atmosphere and the potential differences between the electrodes are required for stable and consistent device behavior, 2) the obtained maximum effective capacitance (5 μF cm?2) of the membrane suggests that the electric double layer is distributed over a broad region within the polyelectrolyte, and 3) electromodulation spectroscopy combined with current–voltage characteristics provide a method to determine the threshold gate voltage from an electrostatic field‐effect doping to a region of (irreversible) electrochemical perturbation of the polymeric semiconductor.  相似文献   

17.
To develop high‐capacitance flexible solid‐state supercapacitors and explore its application in self‐powered electronics is one of ongoing research topics. In this study, self‐stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free‐standing electrode for flexible solid‐state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid‐state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g?1 and good cycling stability of 10 000 cycles. Furthermore, the flexible solid‐state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero‐HSCs) to build self‐powered electronics. It is found that the solid‐state supercapacitors can be charged by pero‐HSCs and discharged from 0.75 V. These results demonstrate that the self‐powered electronics by integration of the flexible solid‐state supercapacitors with pero‐HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.  相似文献   

18.
Electrical instability and nonideality due to undesirable electron injection are often‐encountered problems for high‐mobility organic field‐effect transistors (OFETs) with low‐bandgap polymer semiconductors. Due to electron trapping and the resulting accumulation of negative charges on the silicon dioxide dielectric, transfer curves deviate from ideality characteristics and double‐slopes are observed as the devices are operated for extended periods of time. One way to circumvent those is to use an electron‐acceptor additive, such as fullerene and its derivatives. This work interprets the mechanisms of how fullerene derivatives suppress electron transport and electrical instability while maintaining high hole mobility in p‐type OFETs. This study shows that hole transport of the active layer is uninterrupted upon the addition of the electron acceptors. Most importantly, the added fullerene derivatives out‐compete SiO2 to acquire electrons that are injected into the polymers. Electrical instability and double‐slope induced from electron trapping at SiO2 surface are thereby suppressed.  相似文献   

19.
The development of solution‐processed field effect transistors (FETs) based on organic and hybrid materials over the past two decades has demonstrated the incredible potential in these technologies. However, solution processed FETs generally require impracticably high voltages to switch on and off, which precludes their application in low‐power devices and prevent their integration with standard logic circuitry. Here, a universal and environmentally benign solution‐processing method for the preparation of Ta2O5, HfO2 and ZrO2 amorphous dielectric thin films is demonstrated. High mobility CdS FETs are fabricated on such high‐κ dielectric substrates entirely via solution‐processing. The highest mobility, 2.97 cm2 V?1 s?1 is achieved in the device with Ta2O5 dielectric with a low threshold voltage of 1.00 V, which is higher than the mobility of the reference CdS FET with SiO2 dielectric with an order of magnitude decrease in threshold voltage as well. Because these FETs can be operated at less than 5 V, they may potentially be integrated with existing logic and display circuitry without significant signal amplification. This report demonstrates high‐mobility FETs using solution‐processed Ta2O5 dielectrics with drastically reduced power consumption; ≈95% reduction compared to that of the device with a conventional SiO2 gate dielectric.  相似文献   

20.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号