首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于线性混合模型的高光谱图像端元提取   总被引:16,自引:0,他引:16  
近年来,基于线性混合模型的光谱解混合技术正在越来越广泛地用在光谱数据分析和遥感地物量化中,这项技术的关键就在于确定端元(Endmember)光谱。通常,端元的荻取有两种方式:来源于光谱库以及来源于图像数据,相比之下后者得到的结果更能体现真实的地面信息。为此,从线性混合模型的特点出发,归纳了目前几种比较成熟的端元提取算法,分析了它们的主要思想和存在的优缺点,并总结了评估算法结果的依据,最后介绍了端元提取技术的发展趋势。  相似文献   

2.
A snow-cover mapping method accounting for forests (SnowFrac) is presented. SnowFrac uses spectral unmixing and endmember constraints to estimate the snow-cover fraction of a pixel. The unmixing is based on a linear spectral mixture model, which includes endmembers for snow, conifer, branches of leafless deciduous trees and snow-free ground. Model input consists of a land-cover fraction map and endmember spectra. The land-cover fraction map is applied in the unmixing procedure to identify the number and types of endmembers for every pixel, but also to set constraints on the area fractions of the forest endmembers. SnowFrac was applied on two Terra Moderate Resolution Imaging Spectroradiometer (MODIS) images with different snow conditions covering a forested area in southern Norway. Six experiments were carried out, each with different endmember constraints. Estimated snow-cover fractions were compared with snow-cover fraction reference maps derived from two Landsat Enhanced Thematic Mapper Plus (ETM+) images acquired the same days as the MODIS images. Results are presented for non-forested areas, deciduous forests, coniferous forests and mixed deciduous/coniferous forests. The snow-cover fraction estimates are enhanced by increasing constraints introduced to the unmixing procedure. The classification accuracy shows that 96% of the pixels are classified with less than 20% error (absolute units) on 7 May 2001 when all forested and non-forested areas are included. The corresponding figure for 4 May 2000 is 88%.  相似文献   

3.
4.
端元约束下的高光谱混合像元非负矩阵分解   总被引:1,自引:0,他引:1       下载免费PDF全文
吴波  赵银娣  周小成 《计算机工程》2008,34(22):229-230
提出一种端元约束条件下的非负矩阵分解方法来自动反演混合像元组分。以端元光谱之间的差距为约束条件,使得目标函数综合了影像的分解误差和端元光谱的影响,并以最大后验概率方法导出了限制性非负矩阵分解的迭代算法。成像光谱数据实验结果表明该方法能够自动提取影像的端元光谱矩阵与组分信息,且分解精度比IEA方法高。  相似文献   

5.
Most techniques available in the endmember extraction rely on exploiting the spectral information of the data alone. In this paper, we improve the utilization of data information by dividing a pixel into four subpixels which are redefined by the scalar factor related to the spatial–spectral similarity. The spatial information is integrated into the spectral information in a certain spatial neighbourhood domain, which can make extracted endmembers more precisely, because the effect of noise and outliers can be suppressed with preprocessing (PP). Meanwhile, the accuracy of spectral unmixing will be improved without modification to the conventional methods applied to spectral-based endmember extraction. Experimental results with both synthetic and real hyperspectral images demonstrate the unmixing accuracy is better than that without PP.  相似文献   

6.
Spectral mixture analysis is a widely used method to determine the sub‐pixel abundance of vegetation, soils and other spectrally distinct materials that fundamentally contribute to the spectral signal of mixed pixels. In this paper we present a computing and environmental analysis tool, named VMESMA, which extends the possibilities of conventional spectral unmixing. The basis is the categorization of the scene into different units or scene sub‐areas and software guidance for endmember selection, allowing for a better adaptation of the model to the conditions of the main cover types. For each pixel an individual combination of endmembers may be selected by automated matching to model quality criteria. This hierarchical assessment can incorporate a priori knowledge from different data sources, including information derived from the unmixing results. Based on an iterative feedback process, the unmixing performance may be improved at each stage until an optimum level is reached. VMESMA allows an immediate estimate of the proportions, which is very robust against external factors (e.g. illumination) and canopy shade. An application of VMESMA on hyperspectral data has been conducted to evaluate the possibilities to map residual sludge and sludge derivatives for two consecutive years with changing land surface conditions. The method offered greater flexibility and new possibilities to improve the understanding and modelling of the scene characteristics.  相似文献   

7.
目的 基于非负矩阵分解的高光谱图像无监督解混算法普遍存在着目标函数对噪声敏感、在低信噪比条件下端元提取和丰度估计性能不佳的缺点。因此,提出一种基于稳健非负矩阵分解的高光谱图像混合像元分解算法。方法 首先在传统基于非负矩阵分解的解混算法基础上,对目标函数加以改进,用更加稳健的L1范数作为重建误差项,提高算法对噪声的适应能力,得到新的无监督解混目标函数。针对新目标函数的非凸特性,利用梯度下降法对端元矩阵和丰度矩阵交替迭代求解,进而完成优化求解,得到端元和丰度估计值。结果 分别利用模拟和真实高光谱数据,对算法性能进行定性和定量分析。在模拟数据集中,将本文算法与具有代表性的5种无监督解混算法进行比较,相比于对比算法中最优者,本文算法在典型信噪比20 dB下,光谱角距离(spectral angle distance,SAD)增大了10.5%,信号重构误差(signal to reconstruction error,SRE)减小了9.3%;在真实数据集中,利用光谱库中的地物光谱特征验证本文算法端元提取质量,并利用真实地物分布定性分析丰度估计结果。结论 提出的基于稳健非负矩阵分解的高光谱无监督解混算法,在低信噪比条件下,能够获得较好的端元提取和丰度估计精度,解混效果更好。  相似文献   

8.
针对混合像元分解误差问题,提出一种基于拉格朗日算法的高光谱解混算法。通过变分增广拉格朗日算法提取出部分端元,由于端元组中存在相似端元影响解混精度,利用基于梯度的光谱信息散度算法进行光谱区分,除去相似端元。通过对得到的端元进行排序,依次增加端元进行光谱解混,将满足条件的端元增加进端元组,最终得到优选端元。该方法不仅有效去除了相似端元的干扰,而且不需要不断搜索端元的组合,根据每个端元对于混合像元的重要性做出相应次数的非限制性最小二乘法计算,得到更精确高光谱端元的子集,该方法对高光谱混合像元解混的效率以及可靠性均有所提高。  相似文献   

9.
基于光谱信息散度与光谱角匹配的高光谱解混算法   总被引:1,自引:0,他引:1  
针对采用线性逆卷积(LD)算法进行端元初选过程中,端元子集中存在相似端元光谱,影响解混精度的问题,提出了一种基于光谱信息散度(SID)与光谱角匹配(SAM)算法的端元子集优选光谱解混算法。通过在端元进行二次选择时,采用以光谱信息散度和光谱角(SID-SA)混合法准则作为最相似端元选择的判据,去除相似端元,降低相似端元对解混精度的影响。实验结果表明,基于SID与SAM的高光谱解混算法将重构影像的均方根误差(RMSE)降低到0.0104,该方法比传统方法提高了端元的选择精度,减少了丰度估计误差,误差分布更加均匀。  相似文献   

10.
In the urban environment both quality of life and surface biophysical processes are closely related to the presence of vegetation. Spectral mixture analysis (SMA) has been frequently used to derive subpixel vegetation information from remotely sensed imagery in urban areas, where the underlying landscapes are assumed to be composed of a few fundamental components, called endmembers. A critical step in SMA is to identify the endmembers and their corresponding spectral signatures. A common practice in SMA assumes a constant spectral signature for each endmember. In fact, the spectral signatures of endmembers may vary from pixel to pixel due to changes in biophysical (e.g. leaves, stems and bark) and biochemical (e.g. chlorophyll content) composition. This study developed a Bayesian Spectral Mixture Analysis (BSMA) model to understand the impact of endmember variability on the derivation of subpixel vegetation fractions in an urban environment. BSMA incorporates endmember spectral variability in the unmixing process based on Bayes Theorem. In traditional SMA, each endmember is represented by a constant signature, while BSMA uses the endmember signature probability distribution in the analysis. BSMA has the advantage of maximally capturing the spectral variability of an image with the least number of endmembers. In this study, the BSMA model is first applied to simulated images, and then to Ikonos and Landsat ETM+ images. BSMA leads to an improved estimate of subpixel vegetation fractions, and provides uncertainty information for the estimates. The study also found that the traditional SMA using the statistical means of the signature distributions as endmember signatures produces subpixel endmember fractions with almost the same and sometimes even better accuracy than those from BSMA except without uncertainty information for the estimates. However, using the modes of signature distributions as endmembers may result in serious bias in subpixel endmember fractions derived from traditional SMA.  相似文献   

11.
一种端元可变的混合像元分解方法   总被引:11,自引:0,他引:11       下载免费PDF全文
混合像元线性分解是高光谱影像处理的常用方法,它使用相同的端元矩阵对像元进行分解,其结果是分解精度不高。为此提出了一种端元可变的混合像元分解方法,在确定端元矩阵时,首先考察混合像元与端元的光谱相似性,结合地物空间分布特点,实现了可变端元的混合像元分解。试验结果表明,该分解方法分解精度优于传统线性模型,符合实际情况。  相似文献   

12.
光谱可变性是影响高光谱图像光谱混合分析精度的重要因素,多端元光谱混合分析是解决该问题的有效手段。为了降低光谱混合分析时间复杂度的同时提高其精度,提出了一种由粗到细的多端元光谱混合分析算法,该算法首先基于扩展的端元集对每个像元进行全约束光谱混合粗分析,确定含所有地物的初始端元集,在此基础上进一步进行精细光谱混合分析,迭代光谱混合分析构建端元子集,最终根据重构误差变化量确定各个像元的最优端元集。实验结果表明:相比迭代光谱混合分析法和分层多端元光谱混合分析法,所提出的由粗到细的高光谱图像多端元光谱混合分析能有效降低算法反演丰度误差并改善计算效率。  相似文献   

13.
光谱可变性是影响高光谱图像光谱混合分析精度的重要因素,多端元光谱混合分析是解决该问题的有效手段。为了降低光谱混合分析时间复杂度的同时提高其精度,提出了一种由粗到细的多端元光谱混合分析算法,该算法首先基于扩展的端元集对每个像元进行全约束光谱混合粗分析,确定含所有地物的初始端元集,在此基础上进一步进行精细光谱混合分析,迭代光谱混合分析构建端元子集,最终根据重构误差变化量确定各个像元的最优端元集。实验结果表明:相比迭代光谱混合分析法和分层多端元光谱混合分析法,所提出的由粗到细的高光谱图像多端元光谱混合分析能有效降低算法反演丰度误差并改善计算效率。  相似文献   

14.
非监督正交子空间投影的高光谱混合像元自动分解   总被引:16,自引:0,他引:16       下载免费PDF全文
吴波  张良培  李平湘 《中国图象图形学报》2004,9(11):1392-1396,F008
利用混合像元线性分解技术处理高光谱影像,以获取研究区域中同一像元的不同组份是遥感应用的主要目的之一。近年来,研究者们发展了一种正交子空间投影技术(0SP),用来探测感兴趣目标,进一步可以用来分解混合像元,然而应用这种方法分解混合像元的缺陷是需要有研究区域的先验信息,这就制约了它在这方面的应用。为此针对这种不足,提出一种非监督的正交子空间投影(UOSP)技术,用来自动获取影像端元光谱,同时进行混合像元分解。并用成像光谱数据(PHI)实例测试了这个方法,结果表明该方法自动获取的端元比较合理,且分解混合像元精度较高。  相似文献   

15.
Satellite imagery is formed by finite digital numbers representing a specific location of ground surface in which each matrix element is denominated as a picture element or pixel. The pixels represent the sensor measurements of spectral radiance. The radiance recorded in the satellite images is then an integrated sum of the radiances of all targets within the instantaneous field of view (IFOV) of the sensors. Therefore, the radiation detected is caused by a mixture of several different materials within the image pixels. For this reason, spectral unmixing has been used as a technique for analysing the mixture of components in remotely sensed images for almost 30 years. Different spectral unmixing approaches have been described in the literature. In recent years, many authors have proposed more complex models that permit obtaining a higher accuracy and use less computing time. Although the most widely used method consists of employing a single set of endmembers (typically three or four) on the whole image and using a constrained least squares method to perform the unmixing linearly, every different algorithm has its own merits and no single approach is optimal and applicable to all cases. Additionally, the number of applications using unmixing techniques is increasing. Spectral unmixing techniques are used mainly for providing information to monitor different natural resources (agricultural, forest, geological, etc.) and environmental problems (erosion, deforestation, plagues and disease, forest fires, etc.). This article is a comprehensive exploration of all of the major unmixing approaches and their applications.  相似文献   

16.
Linear spectral unmixing is a very important technique in hyperspectral image analysis. It contains two main steps. First, it finds spectrally unique signatures of pure ground components (called endmembers); second, it estimates their corresponding fractional abundances in each pixel. Recently, a discrete particle swarm optimization (DPSO) algorithm was introduced to accurately extract endmembers with high optimal performance. However, because of its limited feasible solution space, DPSO necessarily needs a small amount of candidate endmembers before extraction. Consequently, how to provide a suitable candidate endmember set, which has not been analyzed yet, is a critical issue in using DPSO for unmixing problem. In this study, three representative pure pixel-based methods, pixel purity index, vertex component analysis (VCA), and N-FINDR, are quantitatively compared to provide candidate endmembers for DPSO. The experiments with synthetic and real hyperspectral images indicate that VCA is the most reliable preprocessing implementation for DPSO. Further, it can be concluded that DPSO with the proposed preprocessing implementations given in this paper is robust for endmember extraction.  相似文献   

17.
基于RM S 误差分析的高光谱图像自动端元提取算法   总被引:2,自引:0,他引:2  
提出了一种基于RM S ( root mean square) 误差分析的自动端元提取算法。对图像每做一次线性解混合, 就得到一幅以均方根RMS误差表示的残余误差图像, 从中选出误差较大的像素作为新的端元开始下一次解混合, 通过多次迭代, 直到得到了要求数目的端元。该算法克服了以往端元提取方法监督特性的局限, 减少了对先验信息的依赖, 同时保留了图像中的异常。利用仿真和实验数据验证了该算法的有效性。  相似文献   

18.
混合像元问题在低、中分辨率遥感图像中尤为突出,混合像元的存在不仅会影响地物识别和图像分类精度,也是遥感科学向定量化发展的主要障碍之一。因此,遥感图像混合像元分解及其地表覆盖信息的定量提取是近年来研究的热点。针对城市土地覆盖信息的定量提取问题,利用中等分辨率遥感图像(Landsat TM),集成光谱归一化与变组分光谱混合分析(NMESMA)的方法,基于植被-非渗透表面-土壤(V\|I\|S)模型,定量提取研究区植被、土壤和非渗透表面3类土地覆盖的定量信息,并与固定组分的光谱混合分析(LSMA)分解结果进行对比分析。结果表明:基于光谱归一化的变组分光谱混合分析(NMESMA)方法获得的精度高于传统固定组分的光谱混合分析(LSMA)结果,可有效解决光谱异质性较高的城市区域的混合像元问题,为有效提取城市地表覆盖信息,研究城市生态环境变化和模拟分析,提供了有效的信息提取方法。  相似文献   

19.
In urban areas, spectral mixture analysis (SMA) is a common technique for deriving the fractions of land covers within a pixel and information on the distribution of impervious surfaces. This study examined how the selection of endmembers affected the quantification of impervious surfaces using TM and ASTER imagery. Multiple subsets of endmembers derived using (1) extreme pixels from a minimum noise fraction (MNF) transformation, and (2) a manual approach using a priori knowledge of the study area were analysed. Two data sets were used to assess accuracy: (1) simulated image data comprising unmixed and mixed pixels of 10 typical and spectrally different urban land covers, and (2) detailed data derived from high-resolution aerial photography. The dimensionality of the imagery limited the number of endmembers, and as a result, unmixed land covers were modelled using multiple endmembers and some cells had abundance values that summed to more than one or were negative. The land covers of red roofs and concrete were the largest contributors to the error in impervious surfaces. The Sequential Maximum Angle Convex Cone (SMACC) endmember model was also used to unmix the images; however, the larger number of endmembers did not resolve the use of multiple endmembers to model the unmixed land covers and the accuracy was similar to that using SMA. The relationship between the pervious fraction estimated using the vegetation endmember and the ground reference data was stronger than that for the impervious fraction, although the fraction was underestimated. The problems in modelling highly variable impervious surfaces with a limited number of endmembers suggest that in urban environments with substantial vegetation, modelling the vegetation component as the inverse of the impervious fraction may lead to improved results.  相似文献   

20.
The gamma-ray spectrometry responses from bedrock in Canadian Shield areas are substantially masked by overburden and vegetation. Proper interpretation of airborne gamma-ray spectrometry data is dependent on accounting for the interference provided by surface cover. In this paper, a method is tested to correct airborne gamma-ray spectrometry, acquired over the Canadian Shield of northeastern Alberta, for vegetation screening by estimating the proportions of bedrock and vegetation cover from Landsat TM data. TM pixel values, due to the patchy network of bedrock and vegetation, result from a spectral mixture of these ground cover classes. Linear unmixing was implemented to deconvolve TM bands in abundance images to estimate proportions of bedrock and vegetation for each pixel. The outcrop abundance image, representing spatial variation in area percentage of bedrock, is used in linear regression analysis to calibrate co-registered K, eTh, and eU gamma-ray spectrometry channels to 40 per cent bedrock endmember images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号